首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT: South Florida and the Everglades have been under intensive development since 1850 by Federal and State governments who encouraged and financed extensive drainage and hydraulic changes, primarily for agricultural settlement. Agricultural development of the sugar industry in the northern Everglades adjacent to Lake Okeechobee rapidly progressed only after the 1900s. Political and resource management conflicts have arisen because policies which once favored development are now being reversed by policies and regulation efforts to restore and conserve natural ecosystems. Currently, the environmental and ecological impacts of agricultural land use adjacent to natural wtlands of the Everglades are being assessed. The objectives of this paper are: (1) to outline the historical development of south Florida and the sugar industry, (2) to relate this history to political and management policy changes occurring as it pertains to ecosystem restoration and the multiuser competition for water/land resources, and (3) to propose how integrated resource management might be utilized for a sustainable Everglades and south Florida. This paper outlines the historical paradox of urban settlement, land development, and agricultural production, with efforts in the recent decade to acquire, manage, and preserve land and water resources for natural areas conservation. Only though the use of integrated resource management will the defined resource conflicts be mediated.  相似文献   

2.
ABSTRACT: This paper is a computer simulation analysis of an agricultural nonpoint pollution problem. Computer modeling is a universally applicable tool that can be used for establishing the linkages between and the quality of agricultural runoff in both surface and subsurface flow. The tradeoffs between the costs of soil conservation practices and water quality are reported, and the economic implications of such tradeoffs are discussed. Soil and nutrient losses resulting from crop production practices are analyzed using a field-scale computer simulation model (CREAMS). No-till planting, reduced tillage, and sod waterway systems are more cost effective than other practices for controlling soil and nutrient runoff losses. Nitrate leaching losses are increased slightly by most soil conservation practices. Terrace systems and permanent vegetative cover impose the greatest societal cost for water quality protection. Public cost sharing and tax incentives encourage farmers to adopt expensive structural practices, and policies are needed to get cost-effective practices implemented on critical acreage. Extensive treatment of land is necessary for agricultural best management practices (BMPs) to significantly improve water quality in areas that are intensively farmed.  相似文献   

3.
The ecosystems of South Florida are unique in the world. The defining features of the natural Everglades (large spatial scale, temporal patterns of water storage and sheetflow, and low nutrient levels) historically allowed a mosaic of habitats with characteristic animals. Massive hydrological alterations have halved the Everglades, and ecological sustainability requires fundamental changes in management.The US Man and the Biosphere Human-Dominated Systems Directorate is conducting a case study of South Florida using ecosystem management as a framework for exploring options for mutually dependent sustainability of society and the environment. A new methodology was developed to specify sustainability goals, characterize human factors affecting the ecosystem, and conduct scenario/consequence analyses to examine ecological and societal implications. South Florida has sufficient water for urban, agricultural, and ecological needs, but most water drains to the sea through the system of canals; thus, the issue is not competition for resources but storage and management of water. The goal is to reestablish the natural system for water quantity, timing, and distribution over a sufficient area to restore the essence of the Everglades.The societal sustainability in the Everglades Agricultural Area (EAA) is at risk because of soil degradation, vulnerability of sugar price supports, policies affecting Cuban sugar imports, and political/economic forces aligned against sugar production. One scenario suggested using the EAA for water storage while under private sugar production, thereby linking sustainability of the ecological system with societal sustainability. Further analyses are needed, but the US MAB project suggests achieving ecological sustainability consistent with societal sustainability may be feasible.  相似文献   

4.
A multi-objective optimisation approach to water management   总被引:3,自引:0,他引:3  
The management of river basins is complex especially when decisions about environmental flows are considered in addition to those concerning urban and agricultural water demand. The solution to these complex decision problems requires the use of mathematical techniques that are formulated to take into account conflicting objectives. Many optimization models exist for water management systems but there is a knowledge gap in linking bio-economic objectives with the optimum use of all water resources under conflicting demands. The efficient operation and management of a network of nodes comprising storages, canals, river reaches and irrigation districts under environmental flow constraints is challenging. Minimization of risks associated with agricultural production requires accounting for uncertainty involved with climate, environmental policy and markets. Markets and economic criteria determine what crops farmers would like to grow with subsequent effect on water resources and the environment. Due to conflicts between multiple goal requirements and the competing water demands of different sectors, a multi-criteria decision-making (MCDM) framework was developed to analyze production targets under physical, biological, economic and environmental constraints. This approach is described by analyzing the conflicts that may arise between profitability, variable costs of production and pumping of groundwater for a hypothetical irrigation area.  相似文献   

5.
Population growth in the Southeast has driven withdrawals for municipal water beyond the limits of local supplies. With few options left for development of virgin sources, a number of urban areas are looking toward demand management and additional supplies by reallocating storage in reservoirs that were built primarily or in part for hydropower. Hydropower has become a lesser part of the mix of energy sources, and the question arises as to value of water for that purpose relative to its value for municipal use. Three cases are used to examine the issue. Effects of withdrawal for municipal water supply on output of electric energy are estimated. Benefits of foregone energy are evaluated using the least cost alternative for replacement, and benefits for municipal water are estimated using costs for development of new sources. Benefits for use as municipal water are found to be considerably higher than benefits for hydroelectric energy at existing prices, even higher than the least cost alternative for replacement. Given the spatial distribution of the cases, that finding would appear to hold in general across the region.  相似文献   

6.
ABSTRACT: The cost of water service to rural residents is very high compared to urban areas. This is true even after subsidization by Farmers Home Administration (FmHA) loans and grants. Capital cost data on 44 projects financed by the Ohio office of the FmHA during the period August 1968 to January 1977 are used to derive cost equations for 26 components of rural water distribution systems. These components represent 92 percent of the capital cost of the pipeline distribution systems studied. The data can be used to economically design rural water supply systems from a capital cost viewpoint. More data are needed on operation and maintenance costs as well as central and cluster well costs before totally economic system designs can be undertaken.  相似文献   

7.
ABSTRACT: In the near future, groundwater storage of imported water may become increasingly important as sites for surface storage are less available. This article explores the potential economic costs and benefits of groundwater storage. The costs include capital outlays, maintenance costs, land costs, legal costs, energy costs, and opportunity costs. The benefits include land cost savings, prevention of subsidence, aquifer protection, and higher economic use of surface lands that might be covered by a reservoir.  相似文献   

8.
ABSTRACT: Rapid population growth in the metropolitan area of Denver, Colorado, is causing conflicts over water use. Two cities, Thomton and Westminster, have begun condemnation proceedings against three irrigation companies to secure agricultural water rights for municipal use. This is the first condemnation proceeding against irrigation water rights for municipal use. Should the suit succeed, over 30,000 acres of presently irrigated land will lose its water supply. There are about four hundred landowners in the area; two hundred of these are commercial farmers, including truck, dairy and specialty farms. Total agricultural production amounts to about $8 million per year. About 561 jobs related to agriculture will disappear along with about $4 million in not income. Only 6.4 percent of the farmland along the Front Range is irrigated. Continued urban growth will put pressure on the water supply of much of this land. The interested parties of the region should cooperate to lessen the impact of urban growth on agricultural lands and water by forming a metropolitan water district. Such a district could share costs of development of additional municipal water and develop systems where municipalities would recycle waste water back to the irrigated lands.  相似文献   

9.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   

10.
Liu Y  Qin X  Guo H  Zhou F  Wang J  Lv X  Mao G 《Environmental management》2007,40(6):966-980
Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between $1.48 × 109 and $8.76 × 109 or between $3.98 × 109 and $16.7 × 109, depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities (q i ) of TEC. Changes in q i resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and grassland conservation.  相似文献   

11.
Due to its nature, agricultural land use depends on local site characteristics such as production potential, costs and external effects. To assess the relevance of the modifying areal unit problem (MAUP), we investigated as to how a change in the data resolution regarding both soil and land use data influences the results obtained for different land use indicators. For the assessment we use the example of the greenhouse gas (GHG) emissions from agriculturally used organic soils (mainly fens and bogs). Although less than 5 % of the German agricultural area in use is located on organic soils, the drainage of these areas to enable their agricultural utilization causes roughly 37 % of the GHG emissions of the German agricultural sector. The abandonment of the cultivation and rewetting of organic soils would be an effective policy to reduce national GHG emissions. To assess the abatement costs, it is essential to know which commodities, and at what quantities, are actually produced on this land. Furthermore, in order to limit windfall profits, information on the differences of the profitability among farms are needed. However, high-resolution data regarding land use and soil characteristics are often not available, and their generation is costly or the access is strictly limited because of legal constraints. Therefore, in this paper, we analyse how indicators for land use on organic soils respond to changes in the spatial aggregation of the data. In Germany, organic soils are predominantly used for forage cropping. Marked differences between the various regions of Germany are apparent with respect to the dynamics and the intensity of land use. Data resolution mainly impairs the derived extent of agriculturally used peatland and the observed intensity gradient, while its impact on the average value for the investigated set of land-use indicators is generally minor.  相似文献   

12.
. Water Reservoir Systems were investigated for urban areas as an alternative or complement to storm water drainage systems for flood control which could provide benefits in water conservation and reduce drainage system costs. The study consisted of: (1) gathering of engineering data on the topographical, hydrological, and precipitation characteristics of the area and urban development and economic statistics  相似文献   

13.
Everglades restoration is dependent on constructed wetlands to treat agricultural phosphorus (P)-enriched runoff prior to delivery to the Everglades. Over the last 5 years, P concentrations delivered to the northern boundary of Everglades National Park (Park) have remained higher than the 8 μg L?1-target identified to be protective of flora and fauna. Historically, Everglades hydrology was driven by rainfall that would then sheetflow through the system. The system is now divided into a number of large impoundments. We use sodium-to-calcium ratios as a water source discriminator to assess the influence of management and environmental conditions to understand why P concentrations in Park inflows remain higher than that of the target. Runoff from Water Conservation Area 3A (Area 3A) and canal water from areas north of Area 3A are two major sources of water to the Park, and both have distinct Na:Ca ratios. The P concentrations of Park inflows have decreased since the 1980s, and from June 1994 through May 2000, concentrations were the lowest when Area 3A water depths were the deepest. Area 3A depths declined following this period and P concentrations subsequently increased. Further, some water sources for the Park are not treated and are impeding concentration reductions. Promoting sheetflow over channelized flow and treating untreated water sources can work in conjunction with constructed wetlands to further reduce nutrient loading to the sensitive Everglades ecosystem.  相似文献   

14.
Water quality criteria were developed for delivery waters to Everglades National Park. The park receives a minimum of 12.34 m3/sec (315,000 acre-ft/yr) of water from controlled sources external to its boundary. These waters often originate from areas that are or potentially are impacted from urban and agricultural developments. When, in 1970, the U.S. Congress guaranteed minimum water deliveries to Everglades National Park, it also required that these waters be of good quality.The Everglades National Park water quality data base was analyzed from 1970 to 1978 at both in-park and water delivery sites to determine the current level of delivery water quality and to select representative delivery sites. It was found that current delivery water quality was sufficiently high to be adopted as criteria against which future water quality could be compared. From the delivery sites S-12C and L-67A all data were combined from 1970–1978 for 36 parameters including macronutrients, heavy metals, and field parameters such as DO, pH, and specific conductance. Mean concentrations and upper limits were computed and tabulated for comparison during future monitoring programs. These criteria were subsequently adopted through a joint memorandum of agreement between the U.S. Army Corps of Engineers, South Florida Water Management District and the U.S. National Park Service.  相似文献   

15.
ABSTRACT: Ground water quality is an environmental issue of national concern. Agricultural activities, because they involve large land areas, often are cited as a major contributor of ground water contaminants. It appears that some degree of ground water contamination from agricultural land use is inevitable, especially where precipitation exceeds evapotranspiration. For this reason, and because agriculture differs significantly from point sources of pollution, farmers, policymakers, and scientists need alternative management strategies by which to protect ground water. Mathematical models coupled to geographic information systems to form expert systems can be important management tools for both policymakers and agricultural producers. An expert system can provide farmers, researchers, and environmental managers with information by which to better manage agricultural production systems to minimize ground water contamination. Significant research is necessary to perfect such a system, necessitating interim ground water management strategies that include not only a strong research program, but educational and public policy components as well.  相似文献   

16.
ABSTRACT: In developing strategies for nonpoint pollution control in designated 208 areas, one of the issues facing planners is the relative emphasis which should be placed upon urban versus agricultural non-point control. Five criteria which should be considered in designing an appropriate BMP strategy mix are discussed: 1) BMP cost effectiveness; 2) information and administrative cost; 3) flexibility, which relates to the cost of reversibility given substantial uncertainties; 4) associated effects, both direct and indirect; and 5) acceptability to local jurisdictions and groups. Whatever an evaluation on the basis of the first four criteria may suggest, acceptance of agricultural BMPs will be difficult to achieve, thus favoring urban oriented strategies, unless local revenue sources are developed to offer payments to farmers for BMP adoption.  相似文献   

17.
ABSTRACT: Extensive use is made of on-site wastewater disposal systems of cesspools due to the absence of a sanitary sewerage system in Saudi urban areas. This system has caused the groundwater table to rise to a public nuisance level. A health risk has also evolved. There are several infrastructural, environmental, and social impacts from this, resulting in great financial losses. Examples are: surface water flooding, damage to foundations of buildings and asphalt street pavements, flooded basements and added construction costs required for excavation, dewatering, insulation materials, and special cements. Most of these costs are indirectly being paid by the private and public sectors. This study compares the estimated costs of damage and losses with the estimated costs of building, operating, and maintaining sanitary sewerage systems in the cesspool-served areas. The annual cost of the cesspool system, depending on the severity of the adverse impacts, ranges from 2.2 to 4.4 times the annual cost of the sanitary sewerage system. Remedies for these impacts are very expensive, and delays in the implementation of the sanitary sewerage facility will make the damage recovery more expensive, and in some cases, impossible. Thus, it is recommended that highest priority to be given to the sanitary sewerage systems in Saudi urban areas.  相似文献   

18.
We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as delta34S in parts per thousand [/1000] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate-reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and delta34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and delta34S values distinct from those found in surface water. The delta34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.  相似文献   

19.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

20.
In phosphorus-limited freshwater systems, small increases in phosphorus (P) concentrations can lead to eutrophication. To reduce P inputs to these systems, various environmental and agricultural agencies provide producers with incentives to implement best management practices (BMPs). In this study, we examine both the water quality and economic consequences of systematically protecting saturated, runoff-generating areas from active agriculture with selected BMPs. We also examine the joint water quality/economic impacts of these BMPs-specifically BMPs focusing on barnyards and buffer areas. Using the Variable Source Loading Function model (a modified Generalized Watershed Loading Function model) and net present value analysis (NPV), the results indicate that converting runoff-prone agricultural land to buffers and installing barnyard BMPs are both highly effective in decreasing dissolved P loss from a single-farm watershed, but are also costly for the producer. On average, including barnyard BMPs decreases the nutrient loading by about 5.5% compared with only implementing buffers. The annualized NPV for installing both buffers on only the wettest areas of the landscape and implementing barnyard BMPs becomes positive only if the BMPs lifetime exceeds 15 yr. The spatial location of the BMPs in relation to runoff producing areas, the time frame over which the BMPs are implemented, and the marginal costs of increasing buffer size were found to be the most critical considerations for water quality and profitability. The framework presented here incorporates estimations of nutrient loading reductions in the economic analysis, and is applicable to farms facing BMP adoption decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号