首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne particulates (PM10) from four different areas within Agra city (a semi-arid region) were collected using respirable dust samplers during the winter season (Nov. 2005–Feb 2006) and were then extracted with methylene chloride using an automated Soxhlet Extraction System (Soxtherm®). The extracts were analyzed for 17 target polycyclic aromatic hydrocarbons (PAHs) and the heterocycle carbazole. The average concentration of total PAH (TPAH) ranged from 8.04 to 97.93 ng m???3. The industrial site had the highest TPAH concentration followed by the residential, roadside, and agricultural sites. Indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, and benzo(b)fluoranthene were the predominant compounds found in the samples collected from all of the sites. The average B(a)P-equivalent exposure, calculated by using toxic equivalent factors derived from literature and the USEPA, was approximately 7.6 ng m???3. Source identification using factor analysis identified prominent three, four, four, and four probable factors at industrial, residential, roadside, and agricultural sites, respectively.  相似文献   

2.
The exposure of paving workers to polycyclic aromatic hydrocarbons (PAH) during stone mastic asphalt (SMA) paving and remixing was evaluated. The effects on the workers' PAH exposure were also evaluated during the use of an industrial by-product, coal fly ash (CFA), instead of limestone as the filler in the SMA. The PAH exposure was measured by personal air sampling and by analysing the levels of urinary naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in the workers' pre- and post-shift urine samples. The respiratory PAH exposure of the paving workers (geometric mean (GM) 5.7 microg m(-3)) was about ten-fold that of the traffic controllers (GM 0.43 microg m(-3)). The levels of PAH metabolites were significantly higher (p < 0.05) in the post-shift urine samples than in the pre-shift urine samples, and the levels of metabolites in the post-shift urine of paving workers were significantly higher than in that of the controls (p < 0.01). Urinary 1-naphthol correlated well with the airborne concentrations of the two- to three-ring PAHs (r = 0.544, p = 0.003) and naphthalene (r = 0.655, p < 0.001), when non-smoking paving workers were tested. A good correlation was observed between urinary 1-OHP and the airborne concentrations of the four- to six-ring PAHs (r = 0.524, p = 0.003) as well as total PAHs (r = 0.575, p = 0.001). The concentrations of 1-OHP and phenanthrols in the urine of the pavers were significantly higher (p < 0.01) during remixing than during SMA paving. The CFA in the asphalt had no effect on the airborne PAH exposure or on the concentrations of the PAH metabolites in the paving workers' urine.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

4.
Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs (SigmaPAHs) ranged from 190 to 8595 ng g(-1) dry weight, and showed an apparent urban-suburban-rural gradient in both SigmaPAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd)pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a)pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs.  相似文献   

5.
6.
We developed a new microsome purification method and used the Omura and Sato method to measure the total content of cytochrome (Cyt) P450 in earthworm (Eisenia fetida) microsomes. In method development, two different pretreatments, i.e. solubilization or manual separation were used to purify worm microsomes. Solubilization was more effective than manual separation and difference spectra showed a peak at 450 +/- 1 nm in microsomes received solubilization pretreatment. We conducted a 48 h contact test by exposing worms on pyrene (Py) and benzo[a]pyrene (BaP) spiked filter paper. A dose-response relationship was established between total P450 content and the concentration of Py or BaP ranging from 10(-6) mg mL(-1) to 10(-2) mg mL(-1). Results show that total Cyt P450 content in earthworms is a promising biomarker for diagnosing PAHs exposure at sublethal dose ranges.  相似文献   

7.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

8.
Non-occupational inhalation and ingestion exposure to polycyclic aromatic hydrocarbons (PAHs) has been studied in 8 non-smoking volunteers through personal air sampling and urinary biomonitoring. The study period was divided into 4 segments (2 days/segment), including weekdays with regular commute and weekends with limited traffic related exposures; each segment had a high or low PAH diet. Personal air samples were collected continuously from the subjects while at home, at work, and while commuting to and from work. All urine excretions were collected as individual samples during the study. In personal air samples, 28 PAHs were measured, and in urine samples 9 mono-hydroxylated metabolites (OH-PAHs) from 4 parent PAHs (naphthalene, fluorene, phenanthrene and pyrene) were measured. Naphthalene was found at higher concentrations in air samples collected at the subjects' residences, whereas PAHs with four or more aromatic rings were found at higher levels in samples taken while commuting. Urinary OH-PAH biomarker levels increased following reported high inhalation and/or dietary exposure. On days with a low PAH diet, the total amount of inhaled naphthalene during each 24-hour period was well correlated with the amount of excreted naphthols, as was, to a lesser extent, fluorene with its urinary metabolites. During days with a high dietary intake, only naphthalene was significantly correlated with its excreted metabolite. These findings suggest that this group of non-occupational subjects were exposed to naphthalene primarily through indoor air inhalation, and exposed to other PAHs such as pyrene mainly through ingestion.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are toxic pollutants released by various urban combustion sources. Benzo[a]pyrene (BaP) is a representative member of the class of PAHs. Health risk assessment associated with inhalatory PAHs uptake is often estimated on the basis of the BaP concentrations in air. Atmospheric particulate PAHs concentrations were measured at five locations in Tehran, Iran. Sixteen PAHs were extracted from the airborne particles and analyzed by HPLC. Total PAHs concentrations (16 compounds) at five station Arjanteen, Enghelab, Azadi, Bahman, Haft Houz were respectively, 70.2, 96.5, 130, 79.1, 44.1 ng/m(3). The information obtain from the present study indicated that mean of human carcinogens are: benzo[a]antheracene (0.17-4.76 ng/m(3)), chrysene (1.74-3.62 ng/m(3)), benzo[b]fluoranthene (0-5.25 ng/m(3)), benzo[k]fluoranthene (0.32-1.72 ng/m(3)), benzo[a]pyrene (1.41-3.82 ng/m(3)), dibenzo[a,h]anthracene (0.33-2.13 ng/m(3)), and indeno[1,2,3-cd]pyrene (0.25-11.08 ng/m(3)). The development and the establishment of a toxicity equivalency factor (TEF) are used in the assessment of mixtures containing PAHs. The contribution of the carcinogenic potency of BaP alone is in the range of 49.6-76.3% of the total carcinogenic activity. The annual number of lung cancer cases (persons per million) among Tehran residents (population = 10 millions) attributable to these carcinogenic PAHs compounds in 2005 was estimated at 58 persons per million. In Tehran urban areas vehicular emission are the primary contributor to PAHs concentrations, with additional local contributors like industrials emissions.  相似文献   

10.
A study has been carried out to assess the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) from asphalt plant operation, utilising Benzo(a)pyrene (BaP) as a marker for PAHs, to the background air concentration around asphalt plants in the UK. The purpose behind this assessment was to determine whether the use of published BaP emission factors based on the US Environmental Protection Agency (EPA) methodology is appropriate in the context of the UK, especially as the EPA methodology does not give BaP emission factors for all activities. The study also aimed to improve the overall understanding of BaP emissions from asphalt plants in the UK, and determine whether site location and operation is likely to influence the contribution of PAHs to ambient air quality. In order to establish whether the use of US EPA emissions factors is appropriate, the study has compared the BaP emissions measured and calculated emissions rates from two UK sites with those estimated using US EPA emission factors. A dispersion modelling exercise was carried out to show the BaP contribution to ambient air around each site. This study showed that, as the US EPA methodology does not provide factors for all emission sources on asphalt plants, their use may give rise to over- or under-estimations, particularly where sources of BaP are temperature dependent. However, the contribution of both the estimated and measured BaP concentrations to environmental concentration were low, averaging about 0.05 ng m(-3) at the boundary of the sites, which is well below the UK BaP assessment threshold of 0.25 ng m(-3). Therefore, BaP concentrations, and hence PAH concentrations, from similar asphalt plant operations are unlikely to contribute negatively to ambient air quality.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) are a major concern in environmental studies as many of them have been labeled as probable carcinogens by the International Agency for Research on Cancer (IARC 1983). Due to their lipophilic properties and resistance to degradation, PAHs can accumulate in organic tissue. As a consequence, alarming concentrations of these compounds have been found in many aquatic species. The European catfish (Silurus glanis) is a top food chain predator that is considered to be a reliable bio-indicator of environmental pollution. From 2009 to 2011, 54 specimens of S. glanis were captured from four different sites covering the area of the Po River basin (Northern Italy). Fish muscles were analyzed in the laboratory to determine the levels of nine PAHs, namely naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, pyrene, benz[a]anthracene, chrysene, and benz[a]pyrene (BaP), which were detected by high-performance liquid chromatography (HPLC). The total average concentration of PAHs was 26.90?±?49.50 ng g?1 (min 0.60, max 275.75 ng g?1). Analysis showed that 9.20 % of the fish muscles exceeded the maximum levels of 2 ng g?1 set for BaP by European regulations (Commission Regulation (EC), 2006). Values measured for benz[a]pyrene ranged from 0.05 to 8.20 ng g?1 (mean 1.07?±?1.58 ng g?1). Chrysene and benz[a]anthracene, both considered potential human carcinogens (PAH2), were found at levels of 4.40 and 0.05 ng g?1 (mean values), respectively. The highest mean concentration was recorded for anthracene (12.92 ng g?1), which has been recently included in the list of substances of very high concern (SVHC) as reported by the European Chemicals Agency (ECHA 1–9, 2009).  相似文献   

12.
This paper reports the monitoring results of eleven polycyclic aromatic hydrocarbons (PAHs), four to six-ring, at two urban sites-Central & Western (CW) and Tsuen Wan (TW) in Hong Kong from January to December 2000; and the findings of a study conducted in 2001 of the partitioning of the gaseous and particulate phases of PAHs. The sum of the eleven PAHs under study (sigmaPAHs) was found to range from 6.46 to 38.8 ng m(-3). The annual mean levels at 12.2 ng m(-3) and 15.8 ng m(-3) for CW and TW respectively are comparable to those recorded for the previous two years and are also within the reported ranges for other metropolitan cities in the Asia Pacific region. Amongst the selected eleven PAHs, fluoranthene and pyrene were the two most abundant found in the urban atmosphere of Hong Kong during the study period accounting for approximately 80%, of the total PAHs. The ratios of benzo(a)pyrene to benzo(g,h,i)perylene (BaP/BghiP) and indeno(1,2,3-cd)pyrene to benzo(g,h,i)perylene (IDP/BghiP) indicate that diesel and gasoline vehicular exhausts were the predominant local emission sources of PAHs. Seasonal variations with high winter to summer ratios for each of the individual PAHs (CW: 1.6-16.7 and TW: 0.82-8.2) and for sigmaPAHs (CW: 1.9 and TW: 1.8) and a spatial variation of BaP amongst the air monitoring stations are noted. Results of correlation studies illustrate that local meteorological conditions such as ambient temperature, solar radiation, wind speed and wind direction have significant impact on the concentrations of atmospheric PAHs accounting for the observed seasonal variations. A snapshot comparison of the concentrations of PAHs at four sites including a roadside site, a rural site and the two regular urban sites CW and TW was also performed using the profiles of PAHs recorded on two particulate episode days in March 2000.  相似文献   

13.
呼和浩特学生尿中1—羟基芘的抽样分析   总被引:2,自引:0,他引:2  
用反相高压液相色谱对呼市小学生及对照点草原牧民尿中的1-羟基芘进行测定,同时测定两地区大气颗粒物及空气中多环芳烃的含量。结果表明,市区小学生尿中1-羟基芘的浓度采暖季节高于非采暧季节;且显著高于对照点的浓度;尿中1-羟基芘的浓度与空气中全态多环芳烃(PAHs)的代表化合物芘或BaP有很好的正相关。  相似文献   

14.
Waste plastic (WP) and tall oil pitch (T), which are organic recycled industrial by-products, have been used as a binder with bitumen in stone mastic asphalt (SMA) and asphalt concrete (AC). We compared the exposure over one workday in 16 road pavers participating in a survey at four paving sites, using mixes of conventional asphalt (SMA, AC) or mixes containing waste material (SMA-WPT, AC-WPT). The concentrations of 11 aldehydes in air were 515 and 902 microg m(-3) at the SMA-WPT and AC-WPT worksites, being 3 and 13 times greater than at the corresponding worksites laying conventional asphalt. Resin acids (2-42 microg m(-3)), which are known sensitizers, were detected only during laying of AC-WPT. The emission levels (microg m(-3)) of total particulates (300-500), bitumen fumes (60-160), bitumen vapour (80-1120), naphthalene (0.59-1.2), phenanthrene (0.21-0.32), pyrene (<0.015-0.20), benzo(a)pyrene (<0.01) and the sum of 16 PAHs (polycyclic aromatic hydrocarbons, 1.28-2.00) were similar for conventional and WPT asphalts. The dermal deposition of 16 PAHs on exposure pads (on workers' wrist) was low in all pavers (0.7-3.5 ng cm(-2)). Eight OH-PAH biomarkers of naphthalene, phenanthrene and pyrene exposures were quantified in pre- and post-shift urine specimens. The post-shift concentrations (mean +/- SD, micromol mol(-1) creatinine) of 1- plus 2-naphthol; 1-,2-,3-,4- plus 9-phenanthrol; and 1-hydroxypyrene were, respectively, for asphalt workers: 18.1+/- 8.0, 2.41 +/- 0.71 and 0.66+/- 0.58 (smokers); 6.0+/- 2.3, 1.70+/- 0.72 and 0.27+/- 0.15 (non-smokers); WPT asphalt workers: 22.0+/- 9.2, 2.82+/- 1.11 and 0.76+/- 0.18 (smokers); 6.8+/- 2.6, 2.35+/- 0.69 and 0.46+/- 0.13 (non-smokers). The work-related uptake of PAHs was low in all pavers, although it was significantly greater in smokers than in non-smokers. The WPT asphalt workers complained of eye irritation and sore throat more than the pavers who had a much lower exposure to aldehydes and resin acids.  相似文献   

15.
2011年4月通过GC-MS检测和210Pb测年对灌河口海域沉积物(GHES)中的PAHs进行了分析,柱状沉积物中21种PAHs总浓度为21.0~209.0 ng/g,均值为88.1 ng/g,7种致癌PAHs浓度为7.0~90.0 ng/g,其中致癌剂苯并[a]芘浓度为ND~2.0 ng/g。PAHs浓度与沉积物中有机质含量呈低度正相关,与p H无明显相关性。源解析表明,近50年来GHES中的PAHs大部分来自煤和生物质燃烧。近50年来,总PAHs和16种优控PAHs浓度在波动中升高;近年来苊、苊烯、苯并[b]荧蒽、荧蒽、茚并[1,2,3-cd]芘的浓度增高,需查明来源。生态风险评价表明,GHES中以芴为主的负面生物毒性效应会偶尔发生。芴、苯并[b]荧蒽、苯并[k]荧蒽的浓度介于临界与偶然效应浓度值之间,应尽量减少对该海域沉积物的搅动,防止污染物再悬浮导致水体的二次污染。  相似文献   

16.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) in surface microlayer (SML) and subsurface water (SSW) of Lagos Lagoon were investigated using gas chromatography-electron capture detector (GC-ECD) technique to ascertain their occurrence and spatial distribution, origin, enrichment, and carcinogenicity. Total PAH (ΣPAH) concentrations ranged from 9.10 to 16.20 μg L?1 in the SML and 8.90 to 13.30 μg L?1 in the SSW. ΣPAH concentrations were relatively higher in the SML than the underlying SSW samples. The enrichment factors (EFs) of ΣPAHs ranged from 0.76 to 1.74 while the EFs of the individual PAHs varied from 0.50 to 2.09. In general, the EFs values calculated in this study were consistent or slightly less than the EFs reported for similar coastal seawater ecosystems. A correlation between the EFs of fluoranthene and pyrene indicated a positive significant value (R?=?0.9828, p?<?0.0001, n?=?6). Source analyses using the phenanthrene/anthracene and fluoranthene/pyrene ratios indicated the dominance of petrogenic-derived PAHs. Furthermore, enhanced concentrations of BaP (strong carcinogenicity) in SML and SSW samples, which resulted in higher EFs, could pose serious ecological and human health risks.  相似文献   

18.
The objective of the present study is the exploitation of active sampling personal exposure data in assessing the factors that affect exposure to benzene in combination with the widely accepted scheme of passive sampling—time microenvironment–activity diaries (TMAD). The campaign included personal exposure measurements with both passive and active sampling in several microenvironments, evaluation of TMAD kept by the volunteers, and a variety of environmental data (ambient air benzene determination, traffic and meteorological observations). Due to the relatively elevated benzene traffic emissions, average personal exposure was determined to be equal to 8.9 μg/m3, ranging between 5 and 20 μg/m3, which is a value highly related to the average urban concentration (9.2 μg/m3). The information gained from TMAD was embedded (in terms of spatial and temporal distribution) into three zones respectively, in order to draw statistically significant conclusions about the exposure levels and the activity patterns. The contribution of the activities to the overall amount of exposure was further quantified and refined by active sampling measurements. These data revealed that driving in a traffic-congested road was the main activity leading to elevated exposure levels (up to 70 μg/m3), followed by walking on the roadside of a congested road (up to 35 μg/m3). Indoor exposure to benzene was in general lower than outdoor (indicating that traffic is the dominant source of benzene emissions in the wider area), and it was significantly affected by the presence of environmental tobacco smoke. The higher significance of the regression coefficients obtained by statistical analysis of the active sampling data was fundamental for the development of a regression-based prediction exposure model. The model was evaluated through comparison with the passive sampling data, which were considered as an unknown but realistic data exposure pattern. The model performed very well in terms of expressing the variance of the exposure data with an average score of R 2 equal to 0.935. All of the above indicate that active sampling is a necessary albeit more laborious tool that needs to be used as a complement to passive sampling for precise quantification of the factors determining personal exposure patterns.  相似文献   

19.
This paper reports the PAHs levels in the atmosphere of an urbanised industrial site of India. A high-resolution capillary gas chromatograph with a mass spectrometric detector (HRCGC-MS) and a high performance liquid chromatograph (HPLC) equipped with a fluorescence detector were used for the identification and quantitation of PAHs. The atmospheric levels of PAHs were higher (4.66 ng/m3 yearly average) than most of the concentrations previously reported in the literature. Indian sites were found more contaminated with potently carcinogenic: four and above ringed PAHs. Based on a good correlation between the levels of lead, vanadium, BaP and BghiP, the vehicular emission appears to be a major source of the PAHs. Further, the higher levels of observed PAHs could be attributed to the vertical distribution of the aerosols, the preference of the PAHs for the particulate phase and the greater availability of the substrate in the atmosphere for their sorption. This paper also discusses the need for development of a PAHs monitoring protocol and related health effect studies in developing countries such as India.  相似文献   

20.
Measurement of the exhaust emission from gasoline-powered motor vehicles in Bangkok were performed on chassis dynamometer. A fleet of 10 vehicles of different model, years and manufacturers were selected to measure the air pollutants in the exhaust effluent. The study revealed that the carbon monoxide and hydrocarbon emissions averaged 32.3–64.2 and 1.82–2.98 g km–1, respectively, for 1990–1992 cars and decreased to 17.8–40.71 and 0.75–1.88 g km–1, respectively, for 1994–1995 cars. A monitoring program for air pollutant concentrations in ambient air was also conducted to evaluate the air pollution problems in Bangkok arising from vehicle exhaust emission. Four air sampling stations were strategically established to cover the Bangkok Metropolitan Region (BMR). Composite air samples in this study area were collected during the day/night times and weekday/weekend. The average concentrations of suspended particulate matter, carbon monoxide, and nitrogen dioxide in Bangkok street air were found to be 0.65 mg/m3 (24 hr ave.), 19.02 mg/m3 (8 hr ave.) and 0.021 mg/m3 (1 hr ave.), respectively. The average concentrations of benzene and toluene in the ambient air of the study area were found to be 15.07–50.20 and 25.76–130.95 g/mf3, respectively, for 8 hr average. These results indicated that there was a significant increase in air pollutant emissions with increasing car mileage and model year. Subsequent analysis of data showed that there were only 20% of the test vehicles complied to approved emission standard. The finding also revealed that there was a correlation between the average air pollutant concentrations with average traffic speed in each traffic zone of the Bangkok Metropolitan Region (BMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号