首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic farming systems often comprise crops and livestock, recycle farmyard manure for fertilization, and preventive or biocontrol measures are used for plant protection. We determined indicators for soil quality changes in the DOK long-term comparison trial that was initiated in 1978. This replicated field trial comprises organic and integrated (conventional) farming systems that are typical for Swiss agriculture. Livestock based bio-organic (BIOORG), bio-dynamic (BIODYN) and integrated farming systems (CONFYM) were compared at reduced and normal fertilization intensity (0.7 and 1.4 livestock units, LU) in a 7 year crop rotation. A stockless integrated system is fertilized with mineral fertilizers exclusively (CONMIN) and one control treatment remained unfertilized (NOFERT). The CONFYM system is amended with stacked manure, supplemental mineral fertilizers, as well as chemical pesticides. Manure of the BIOORG system is slightly rotted and in BIODYN it is composted aerobically with some herbal additives. In the third crop rotation period at normal fertiliser intensity soil organic carbon (Corg, w/w) in the plough layer (0–20 cm) of the BIODYN system remained constant and decreased by 7% in CONFYM and 9% in BIOORG as compared to the starting values. With no manure application Corg-loss was severest in NOFERT (22%), followed by CONMIN together with the systems at reduced fertiliser intensity (14–16%). Soil pH tended to increase in the organic systems, whereas the integrated systems had the lowest pH values. At the end of the third crop rotation period in 1998 biological soil quality indicators were determined. Compared to soil microbial biomass in the BIODYN systems the CONFYM soils showed 25% lower values and the systems without manure application were lower by 34%. Relative to the BIODYN soils at the same fertilization intensity dehydrogenase activity was 39–42% lower in CONFYM soils and even 62% lower in soils of CONMIN. Soil basal respiration did not differ between farming systems at the same intensity, but when related to microbial biomass (qCO2) it was 20% higher in CONFYM soils and 52% higher in CONMIN as compared to BIODYN, suggesting a higher maintenance requirement of microbial biomass in soils of the integrated systems. The manure based farming systems of the DOK trial are likely to favour an active and fertile soil. Both, Corg and biological soil quality indicators were clearly depending on the quantity and quality of the applied manure types, but soil microbial biomass and activities were much more affected than Corg.  相似文献   

2.
Sulphate leaching losses may reduce the long-term possibility of maintaining the S supply of crops in low input farming systems. The ability of catch crops (Italian ryegrass (Lolium multiflorum Lam), winter rape (Brassica napus L.) and fodder radish (Raphanus sativus L.)) to reduce soil sulphate concentrations in autumn and make it available to a succeeding crop was investigated in 1996–1998 on sandy loam soil in Denmark. All catch crops reduced soil sulphate concentrations in the autumn compared to bare soil. Especially, the cruciferous catch crops had the ability to deplete efficiently soil sulphate levels and thus, reduce the sulphate leaching potential. The S uptake in aboveground catch crop was 8, 22 and 36 kg S per ha for ryegrass, winter rape and fodder radish, respectively. In the following spring, sulphate levels of the autumn bare soil were low in the top 0.5 m and a peak of sulphate was found at 0.75–1 m depth. In contrast, where a fodder radish catch crop had been grown, high sulphate levels were present in the top 0.5 m, but only small amounts of sulphate were found at 0.5–1.5 m depth. In spring barley (Hordeum vulgare L.), that followed catch crops, S concentrations at heading and maturity revealed that the availability of soil S increased following winter rape and fodder radish, whereas there were indications that following ryegrass, the S availability was reduced compared to bare soil. This initial study showed that catch crops have a high potential for reducing sulphate leaching and may be used to synchronise S availability with plant demand in a crop rotation.  相似文献   

3.
Dairy farming is the largest agricultural source of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in Europe. A whole-farm modeling approach was used to investigate promising mitigation measures. The effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions. The potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and to investigate region and system specific differences. An optimized lifetime efficiency of dairy cows reduced GHG emissions by up to 13% compared to baseline model farms. The evaluation of frequent removal of manure from animal housing into outside covered storage reduced farm GHG emissions by up to 7.1%. Scraping of fouled surfaces per se was not an effective option since the reduction in GHG emissions from animal housing was more than out-weighed by increased emissions from the storage and after field application. Manure application by trail hose and injection, respectively, was found to reduce farm GHG emissions on average by 0.7 and 3.2% compared to broadcasting. The calculated model scenarios for anaerobic digestion demonstrated that biogas production could be a very efficient and cost-effective option to reduce GHG emissions. The efficiency of this mitigation measure depends on the amount and quality of organic matter used for co-digestion, and how much of the thermal energy produced is exploited. A reduction of GHG emissions by up to 96% was observed when all thermal energy produced was used to substitute fossil fuels. Potential measures and strategies were scaled up to the level of European regions to estimate their overall mitigation potential. The mitigation potential of different strategies based on a combination of measures ranged from −25 up to −105% compared to baseline model farms. A full implementation of the most effective strategy could result in a total GHG emission reduction of about 50 Mt of carbon dioxide (CO2) equivalents per year for conventional dairy farms of EU(15) comparable to the defined model farms.  相似文献   

4.
Organic farming has undergone significant expansion in Europe over the last decade and it is often seen as a sustainable alternative to intensive agricultural systems. If it is to be truly sustainable, it must maintain levels of soil fertility sufficient for economic crop production in the long-term, whilst also protecting the environment. This paper presents results comparing soils managed organically for at least 15 years, with soils under conventional management, on four arable farms in England. There were no significant differences in total soil organic matter, total nitrogen or C:N ratio between the conventionally and organically managed soils. However, concentrations of extractable potassium and phosphorus were significantly lower in soils managed organically. The largest difference between the conventional and organic fields in potassium concentration was on the oldest organic farm. These results support the argument that organic mixed arable systems are mining reserves of potassium and phosphorus, built up during conventional management, and that changes to organic management practices to increase inputs of potassium and phosphorus are required, if long-term declines in soil fertility, and thus, yields are to be avoided.  相似文献   

5.
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...  相似文献   

6.
While Carbon (C) sequestration on farmlands may contribute to mitigate CO2 concentrations in the atmosphere, greater agro-biodiversity may ensure longer term stability of C storage in fluctuating environments. This study was conducted in the highlands of western Kenya, a region with high potential for agroforestry, with the objectives of assessing current biodiversity and aboveground C stocks in perennial vegetation growing on farmland, and estimating C sequestration potential in aboveground C pools. Allometric models were developed to estimate aboveground biomass of trees and hedgerows, and an inventory of perennial vegetation was conducted in 35 farms in Vihiga and Siaya districts. Values of the Shannon index (H), used to evaluate biodiversity, ranged from 0.01 in woodlots through 0.4–0.6 in food crop plots, to 1.3–1.6 in homegardens. Eucalyptus saligna was the most frequent tree species found as individual trees (20%), in windrows (47%), and in woodlots (99%) in Vihiga and the most frequent in woodlots (96%) in Siaya. Trees represented the most important C pool in aboveground biomass of perennial plants growing on-farm, contributing to 81 and 55% of total aboveground farm C in Vihiga and Siaya, respectively, followed by hedgerows (13 and 39%, respectively) and permanent crop stands (5 and 6%, respectively). Most of the tree C was located in woodlots in Vihiga (61%) and in individual trees growing in or around food crop plots in Siaya (57%). The homegardens represented the second C pool in importance, with 25 and 33% of C stocks in Vihiga and Siaya, respectively. Considering the mean total aboveground C stocks observed, and taking the average farm sizes of Vihiga (0.6 ha) and Siaya (1.4 ha), an average farm would store 6.5 ± 0.1 Mg C farm?1 in Vihiga and 12.4 ± 0.1 Mg C farm?1 in Siaya. At both sites, the C sequestration potential in perennial aboveground biomass was estimated at ca. 16 Mg C ha?1. With the current market price for carbon, the implementation of Clean Development Mechanism Afforestation/Reforestation (CDM A/R) projects seems unfeasible, due to the large number of small farms (between 140 and 300) necessary to achieve a critical land area able to compensate the concomitant minimum transaction costs. Higher financial compensation for C sequestration projects that encourage biodiversity would allow clearer win–win scenarios for smallholder farmers. Thus, a better valuation of ecosystem services should encourage C sequestration together with on-farm biodiversity when promoting CDM A/R projects.  相似文献   

7.
Biofuels can be produced by converting cellulose in crop residues to ethanol. This has recently been viewed as a potential supplement to non-renewable energy sources, especially in the Americas. A 50-yr field experiment was analyzed to determine the influence of (i) removing approximately 22% of the above-ground wheat (Triticum aestivum L.) residue each crop year, and (ii) N and P fertilization on soil carbon (C) in the top 15 cm depth of a fallow–wheat–wheat (F–W–W) rotation. The study was conducted from 1958 to 2007 on a clay soil, at Indian Head in sub-humid southeast Saskatchewan, Canada. Soil C concentrations and bulk densities were measured in the 0–7.5 and 7.5–15 cm depths in 1987, 1996 and 2007 and soil C changes were related to C inputs estimated from straw and root yields calculated from regressions relating these to grain yields. Two soil organic matter models [the Campbell model and the Introductory Carbon Balance Model (ICBM)] were also used to simulate and predict the effects of the treatments on soil C change over time, and to estimate likely soil C change if 50% or 95% of above-ground residues were harvested each crop year. Crop residue removal reduced cumulative C inputs from straw and roots over the 50-yr experiment by only 13%, and this did not significantly (P > 0.05) reduce soil C throughout the experiment duration. However, after 50 yr of applying N fertilizer at recommended rates, soil C increased significantly by about 3 Mg ha−1 compared to the non-fertilized treatment. The simulated effect of removing 50% and 95% of the above-ground residues suggested that removing 50% of the straw would likely have a detectable effect on the soil C, while removing 95% of the straw certainly would. Measurements and model simulations suggest that adoption of no-tillage without proper fertilization will not increase soil C. Although it appears that a modest amount of residue may be safely removed from these Udic Borolls (Black Chernozems) without a measurable effect on soil C, this would only be feasible if accompanied by appropriate fertility management.  相似文献   

8.
有机物料影响下土壤溶液中镉形态及其有效性研究   总被引:18,自引:2,他引:18  
研究了盆载种稻条件下,有机物料对土壤水溶性镉、易解离太镉和可解离态锯的含量变化及其有效性的影响,结果表明,不添加外源镉时,分蘖期猪烘和泥炭均降低了水溶性镉总量,水溶性镉的34%~77%可被阳离子交换树脂解离,87%以上可被螯合树脂解离,到成熟期水生镉的解离度升高,水溶性镉总量与DOC和PH的变化趋势相反,添加外源镉时分蘖期猪烘和泥炭均降低水溶性 量,成熟期水溶性镉总量与DOC的变化呈相反趋势,在不  相似文献   

9.
采用田间微区试验研究不同施肥处理对土壤水溶性有机物 (DOM)的动态变化及其对土壤Cd活性的影响 结果表明 ,与施化肥对照处理相比 ,施用有机肥后土壤中DOM含量明显增加 .但随着水稻的生长DOM呈不断下降的趋势 ,而对照处理的变幅不大 ;在水稻整个生长过程中根际DOM含量不断增加且都高于对应时期土壤DOM的含量 ,并至水稻扬花期最大 ,此时 ,3种处理的根际产生DOM浓度 (DOM浓度以水溶性有机碳 (DOC)计 ,以下同 )分别为 :绿肥与化肥配施处理组 (GM) ( 14 0 2mg·L-1) >猪粪与化肥配施处理组 (PM) ( 11 12mg·L-1) >对照处理组 (F) ( 10 8mg·L-1) .水稻扬花期后 ,各处理的DOM含量不断下降 .试验还指出 ,有机肥施用后根际及土体土壤中交换态及有机结合态Cd含量显著增加 ,是对照处理的 2倍之多 ,同时发现 ,水稻收获后土壤交换态Cd的含量与此时的土壤DOM含量呈明显的正相关 (r土体 =0 92 6 6 ,n =8;r根际 =0 9389 ,n =8) .施用有机肥改良重金属污染土壤应该谨慎  相似文献   

10.
采用正构烷烃及其单体氢同位素组成特征相结合的方法研究了青藏高原北部多年冻土区表层土壤正构烷烃(C21~C33)的生物来源.研究表明:表层土壤中正构烷烃呈双峰型和三峰型的分布特征,表明其具有多个生物来源.长链长正构烷烃(C25~C33)主要来源于陆源高等植物.表层土壤中长链长正构烷烃(C25~C33)中奇碳数正构烷烃的δD值比偶碳数的整体偏轻,原因可能是两者的生物合成途径不同.对中等链长正构烷烃聚类分析后分为两种类型,类型I的中等链长正构烷烃(C21~C24)主要来源于陆源高等植物,类型Ⅱ的中等链长正构烷烃主要来源于细菌等微生物降解的产物.表层土壤样品(FHS-10、TG2-10和TG3-10)中等链长的正构烷烃δD值最轻,应为δD值偏轻的水源和细菌等微生物降解共同作用的结果.  相似文献   

11.
安徽琴溪地区土壤硒元素有效性及开发研究   总被引:1,自引:0,他引:1  
富硒土壤资源日益引起重视,但如何界定富硒土壤没有统一标准。本文选取安徽琴溪地区作为研究对象,利用安徽省富硒土壤分级标准,系统研究琴溪地区农业可耕地土壤及其植物中硒含量,这为琴溪地区富硒产品开发的定位提供了一定的理论依据,并对当地富硒产品的开发提出可行性建议。  相似文献   

12.
重庆市农田土壤有机碳时空变化与固碳潜力分析   总被引:2,自引:0,他引:2  
区域土壤有机碳库、固碳潜力的估算,对全球气候变化中的碳循环研究具有重要意义.本研究基于1978—1979年全国第二次土壤普查和2007—2011年农业部"测土配方施肥"项目的数据,并结合大量前人调研资料和田间试验数据进行整理与比较分析.同时,采取土壤类型法估算了重庆市农田土壤碳库储量和碳密度;基于GIS分析了重庆市农田土壤碳密度的空间分布特征;对30年来各区县农田土壤碳量变化趋势进行拟合分析,估算了农田土壤固碳潜力.结果表明,土壤表层有机碳库总储量为233.54×106t,土壤有机碳密度平均值为3.08 kg·m-2;渝西南、渝东北和渝东南的农田土壤有机碳密度较高,长江干流沿岸及附近低山丘陵地区土壤有机碳密度较低;重庆市农田土壤固碳潜力约为30.82 Tg(以C计),农田土壤单位面积固碳潜力平均值为6.71 t·hm-2.  相似文献   

13.
This paper reports on the influence that residue and fertilizer management have on nutrient balances, soil organic matter (SOM) dynamics, and crop yields of a flooded rice system in northeast Thailand (1992–1997) and a wheat–forage legume rotation in eastern Australia (1992–1998). Both soils had been subject to at least 18 years of cultivation and had lost up to 90% of the original labile (CL) and 85% of the total carbon (CT).For the rainfed rice cropping systems of northeast Thailand, a system is described in which small applications of leaf litter from locally grown trees are applied annually to rice paddy soils prior to transplanting. Annual applications of 1500 kg ha−1 of leaf litter from different locally grown shrubs for five seasons resulted in increases in rice grain yield in 1997 of between 20 and 26% above the no-leaf litter control. Nutrient balances, determined by the difference between the inputs (fertilizer and added leaf litters) and outputs (grain and straw), indicated net positive balances of up to 457 kg N ha−1, and 60 kg P ha−1, after five seasons of leaf litter applications. Sulfur and potassium balances resulted in net deficits of up to −13 kg S ha−1 and −52 kg P ha−1, where no leaf litter was applied and rice straw was removed following harvest. Soil carbon (C) concentrations increased significantly only where higher fertilizer rate and rice stubble retention were combined.The poor management of fertilizers and crop residues, and excessive cultivation has also resulted in large soil fertility losses in the grain growing areas of Eastern Australia. After five wheat and two legume/fallow crops, negative N balances of up to −303 kg ha−1 were calculated for the treatments where wheat stubble was not retained and bare fallow leys were used. The balance of nutrients such as K, which are contained in larger proportions in stubble, were found to be up to −362 kg ha−1 on the straw-removed treatments and up to +29 kg ha−1 on the straw-retained treatments. Forage legume leys resulted in short term increases in CL and the carbon management index (CMI).Sustainable farming systems require that crop yields are stable through the maintenance of soil fertility and the balance of nutrients in the system. Increases in soil C levels require sustained periods of balanced fertilization and residue retention.  相似文献   

14.
Animal territories that differ in the availability of food resources will require (all other things being equal) different levels of effort for successful reproduction. As a consequence, breeding performance may become most strongly dependent on factors that affect individual foraging where resources are poor. We investigated potential links between foraging behaviour, reproductive performance and morphology in a goshawk Accipiter gentilis population, which experienced markedly different resource levels in two different parts of the study area (rabbit-rich vs. rabbit-poor areas). Our analyses revealed (1) that rabbit abundance positively affected male reproductive output; (2) that age, size and rabbit abundance (during winter) positively affected different components of female reproductive output; (3) that foraging movements were inversely affected by rabbit abundance for both sexes (for females, this may mainly have reflected poor provisioning by males in the rabbit-poor area); (4) that younger breeders (both in males and females) tended to move over larger distances than older individuals (which may have reflected both a lack of hunting experience and mate searching); and (5) that male body size (wing length) showed some covariation with resource conditions (suggesting possible adaptations to hunting agile avian prey in the rabbit-poor area). Although we are unable to establish firm causal relationships with our observational data set, our results provide an example of how territory quality (here, food abundance) and individual features (here, age and morphology) may combine to shape a predator's foraging behaviour and, ultimately, its breeding performance.  相似文献   

15.
通过土柱淋溶实验研究了骨炭、磷矿粉与生物调理剂对赣南稀土矿区土壤稀土元素淋溶的影响.结果表明:土壤中添加骨炭、磷矿粉和生物调理剂均显著地提高了淋溶液的p H值.不管是高钇型重稀土土壤还是富镧少钇型轻稀土土壤,添加骨炭均显著地降低了淋溶液中稀土元素的浓度,7 d时淋溶液中15个稀土元素浓度比对照处理降低10.4%~86.7%(重稀土土壤)和4.6%~87.8%(轻稀土土壤),铈、镧、钇、钕、镝、钆等稀土元素浓度降低最明显.培养时间越长稀土元素淋溶量越少,骨炭的降低作用越小.在轻稀土土壤中添加磷矿粉7 d和14 d后,淋溶液中稀土元素浓度均比对照处理有所降低,而在重稀土土壤中添加磷矿粉7~28 d后,均导致淋溶液中稀土元素浓度比对照升高(除了个别元素外).土壤中添加生物调理剂均导致淋溶液中稀土元素浓度急剧提高,7 d时淋溶液中15个稀土元素浓度比对照处理提高0.86~123.4倍(重稀土土壤)和5.4~250.2倍(轻稀土土壤),在重稀土土壤中钇、铒、镱、镝、钆、钕等浓度提高最明显,而在轻稀土土壤中浓度提高最明显的为铈、镧、钕、镨、钆等.另外,还研究了骨炭、磷矿粉和生物调理剂对土壤总稀土元素淋溶的影响.研究表明,骨炭是可以用来修复稀土元素污染土壤的潜力改良剂,而磷矿粉和生物调理剂的应用将提高环境污染的风险.  相似文献   

16.
The abundance patterns of ant communities were monitored with pitfall traps during 14 weeks in four northern California, dry farmed, apple orchards: an abandoned orchard undisturbed for 25 years, two ‘organically’ managed orchards, one with a cover crop of bell beans (Vicia faba) and grasses and the other kept clean of cover by discing, and a ‘commercial’ clean cultivated orchard sprayed with organophosphate insecticides. Six species of ants coexisted in the abandoned orchard, whereas only two species were found in the managed orchards. In both the organic and sprayed, clean cultivated systems, ants were more abundant in the orchard edges than in the vegetation-free centers. This trend was not apparent in the abandoned or organic cover orchards, where plant diversity in the center was similar to that of the edges. Ant predation on potato tuberworm larvae, Phthorimaea operculella, artificially placed on the orchard floor, declined with the intensity of management and vegetational simplication. A higher incidence of larval removal occurred in the edges than in the centers of the clean cultivated orchards. No noticeable populations of ants were detected on the trees in any of the orchards. Increased vegetational diversity and lack of disturbance appeared to affect ant locomotory activity and foraging efficiency by creating preferred sheltering and feeding sites.  相似文献   

17.
湖北省油菜测土配方施肥下N2O减排潜力估算   总被引:1,自引:0,他引:1  
以油菜种植大省-湖北省为案例地,在分析农田氮肥施用与油菜籽产量的基础上,依据氮肥利用率变化,估算测土配方施肥技术在湖北省全面推广的情况下,带来的N2O减排潜力.结果表明,在湖北省油菜种植中,测土配方施肥技术的推广将带来646.32ktCO2-eq的理论减排.以2012年湖北省油菜测土配方推广情况为基础,进一步全面实施该项技术,将产生173.91ktCO2-eq的减排量,占油菜种植因氮肥使用而产生的N2O排放总量的13.98%.测土配方施肥通过优化营养元素配比,提高油菜氮肥利用效率,是一项控制与减少农业N2O排放、减少氮素在环境中盈余量的有效措施.  相似文献   

18.
东北黑土区,尤其是农垦地区,是我国重要的粮食生产基地。土壤侵蚀导致耕地质量严重退化,威胁粮食安全。选取克山农场坡长为1020 m的直型坡、凹型坡和凹—直复合型坡耕地,利用137Cs示踪技术估算坡面土壤侵蚀模数,测定土壤有机碳作为耕地土壤质量参数,揭示典型黑土区长缓坡耕地土壤侵蚀强度沿坡长变化规律及耕地土壤质量参数的响应。结果表明:(1)不同坡形长缓坡耕地土壤侵蚀差异显著,直型坡多年平均侵蚀速率(3040 t·km-2·a-1)<复合型坡(3395 t·km-2·a-1)<凹型坡(4220 t·km-2·a-1)。(2)直型坡、凹型坡、凹—直复合型坡均呈现出侵蚀强—弱周期性变化规律,其振荡周期分别为380 m、250 m和300 m。(3)土壤有机碳含量与土壤侵蚀速率呈极显著负相关关系,其沿坡长变化规律与土壤侵蚀速率沿坡长变化规律相反。土壤侵蚀是造成黑土坡耕地土壤质量退化的直接原因,研究结果可为黑土长缓坡耕地水土保持措施的精准布设及土壤养分管理提供理论支持。  相似文献   

19.
吴萍萍  李录久  李敏 《环境科学学报》2017,37(10):3959-3967
复合污染土壤中Cd、Cu等阳离子重金属与As具有不同的化学性质和迁移转化行为.本研究以负载铁前后的小麦秸秆生物炭作为修复材料,研究酸雨淋溶条件下两者对复合污染土壤中Cd、Cu、As淋失量及赋存形态的影响;通过分析淋滤液pH值、电导率和溶解性有机碳含量等,探讨其可能的作用机制.结果表明,生物炭和负载铁生物炭均显著提高了淋滤液pH值和电导率.溶解性有机碳淋失量在生物炭处理中较对照(CK)处理提高3.4%~15.9%,而在负载铁生物炭处理中则降低27.3%~60.8%.与生物炭不同,负载铁生物炭能够不同程度地降低Cd、Cu和As的淋失,5%施用量下累积淋失量较CK处理分别降低85.7%、19.0%和62.1%.对淋溶后土壤中重金属和As赋存形态进行分析发现,施用生物炭促进了土壤中Cd和Cu由酸提取态向残渣态转化,却使As由无定形及弱结晶铁铝氧化物结合态向专性吸附态转化.负载铁生物炭能够降低土壤中有效态Cd、Cu和As含量,相较于CK处理酸提取态Cd、Cu和非专性吸附态As含量分别减少3.6%~13.4%、7.5%~24.4%和19.0%~58.8%,而可还原态Cd和残渣态Cu、As含量分别增加4.3%~43.3%、2.2%~18.1%和44.9%~53.5%,其中,5%施用量下差异达到显著水平.综合而言,在5%施用量下,生物炭能够降低土壤中有效态Cd、Cu含量,却提高了As的迁移性和有效性;而负载铁生物炭既降低了酸雨淋溶条件下Cd、Cu、As的淋失,还促进了土壤中Cd、Cu、As由有效态向潜在有效态或稳定态转化,是修复重金属和砷复合污染土壤的有效材料.  相似文献   

20.
Four on-farm experiments examined whether modest applications of fertilizers in combination with prunings from native agroforestry trees would be an alternative to maintain the fertility of ferralitic soils in Benin. An application of about 1.9 t ha−1 dry matter of mulch of Senna siamea combined with 30 kg N ha−1, 22 kg P ha−1 and 25 kg K ha−1 as compound fertilizer was compared with (1) 60 kg N ha−1, 43 kg P ha−1 and 50 kg K ha−1 as compound fertilizer alone, (2) mulch of S. siamea alone (about 3.2 t ha−1 dry matter), and (3) a control treatment. Criteria were soil properties, yields, nutrient uptakes, and nutrient budgets. Application of sole mulch had no significant effects (P>0.05) on maize yields, while combined application of prunings and NPK fertilizers or sole NPK increased yields significantly (P<0.05). The most limiting nutrient was P. The local maize cultivar was efficient in P uptake, but not in internal nutrient utilization efficiency; mulch increased significantly the internal P utilization efficiency (P<0.05). Soil properties were interpreted with the QUEFTS (quantitative evaluation of the fertility of tropical soils) computer program. The predicted and measured yields were almost the same for maize without NPK. The measured responses to NPK were much lower than the responses calculated by QUEFTS. The calculated nutrient budgets were split into balances for available nutrients and for those not immediately available (NIA). Nutrient budgets were negative for the control and sole mulch treatments, and positive for the NPK treatments. Mulch improved the balances of NIA nutrients. The present experiment could not prove that combining NPK with mulch is the best option for sustainable agriculture. It may be more economical to apply lower rates of fertilizer to local maize than those applied in the two NPK treatments in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号