首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Acting under the auspices of the US Endangered Species Act, we quantified wind erosion and its effects on rare and common plant species on a semi-arid military installation in Hawaii. Our goal was to develop management strategies, based on local data, to aid the conservation of rare and common indigenous plants and their habitats. We collected windblown soil coming off of roads and other disturbed soils to assess likely impacts to plants occurring at certain heights and distances from disturbed surfaces. We then subjected plants in a glasshouse to windblown dust treatments, designed from our field data to simulate erosion events, and evaluated the effect of these treatments on photosynthesis and survival. We also designed several field experiments to examine the in-situ effects of windblown soil and soil substrate on germination, growth rate, and survival of indigenous and nonindigenous plants. We conclude from these experiments that most direct effects of windblown soil to plants can be effectively mitigated by locating roads and training areas at least 40 m from sensitive plant habitats and through vegetation management to maintain at least 11% aerial cover on disturbed surfaces. Effects of soil type on germination, growth, and survival was species-specific, emphasizing the importance of species trials prior to, or during, rehabilitation efforts.  相似文献   

2.
Insect habitats in anthropocentric ecosystems consist of crop plants or forest trees and the coexisting non-crop vegetation. The manipulation of the spatial and temporal arrangement of these plant communities can trigger direct or indirect effects on insect pest populations and their associated natural enemy complexes. In this article habitat management is viewed as a technique to design plant associations that support populations of natural enemies or that exert deterrent effects on herbivorous insects.  相似文献   

3.
Ji L  Wang Z  Wang X  An L 《Environmental management》2011,48(6):1107-1121
According to the Seventh National Forest Inventory (2004–2008), China’s forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations—Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.  相似文献   

4.
Chongming, the world’s largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai’s urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.  相似文献   

5.
The theoretical disputes over forest nitrogen (N) fertilization constitute a difficulty for forest managers. In cases where scientists disagree it is hard for practitioners to make scientifically based decisions on what actions to take. The main objective in this study was to understand possible reasons for the scientific discussion associated with the question as to how fertilization for increased forest growth influences the forest ecosystem? Another objective was to clarify the divergent theoretical grounds within this scientific field. The study proceeded by selecting articles based on the criterion that they include field studies of fertilization for stem growth in the temperate region, and then analysing their theoretical content. Differences in theoretical grounds are among the reasons for the scientific disputes over the effects of N fertilization on forest ecosystems.  相似文献   

6.
Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003–2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.  相似文献   

7.
Constructed wetlands are widely used for wastewater treatment, but there is little information on processes affecting their performance in cold climates, effects of plants on seasonal performance, or plant selection for cold regions. We evaluated the effects of three plant species on seasonal removal of dissolved organic matter (OM) (measured by chemical oxygen demand and dissolved organic carbon) and root zone oxidation status (measured by redox potential [Eh] and sulfate [SO4(2-)]) in subsurface-flow wetland (SSW) microcosms. A series of 20-d incubations of simulated wastewater was conducted during a 28-mo greenhouse study at temperatures from 4 to 24 degrees C. Presence and species of plants strongly affected seasonal differences in OM removal and root zone oxidation. All plants enhanced OM removal compared with unplanted controls, but plant effects and differences among species were much greater at 4 degrees C, during dormancy, than at 24 degrees C, during the growing season. Low temperatures were associated with decreased OM removal in unplanted controls and broadleaf cattail (Typha latifolia L.) microcosms and with increased removal in beaked sedge (Carex rostrata Stokes) and hardstem bulrush [Schoenoplectus acutus (Muhl. ex Bigelow) A. & D. L?ve var. acutus] microcosms. Differences in OM removal corresponded to species' apparent abilities to increase root zone oxygen supply. Sedge and bulrush significantly raised Eh values and SO4(2-) concentrations, particularly at 4 degrees C. These results add to evidence that SSWs can be effective in cold climates and suggest that plant species selection may be especially important to optimizing SSW performance in cold climates.  相似文献   

8.
Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.  相似文献   

9.
Transgenic or genetically modified plants possess novel genes that impart beneficial characteristics such as herbicide resistance. One of the least understood areas in the environmental risk assessment of genetically modified crops is their impact on soil- and plant-associated microbial communities. The potential for interaction between transgenic plants and plant residues and the soil microbial community is not well understood. The recognition that these interactions could change microbial biodiversity and affect ecosystem functioning has initiated a limited number of studies in the area. At this time, studies have shown the possibility that transgenes can be transferred to native soil microorganisms through horizontal gene transfer, although there is not evidence of this occurring in the soil. Furthermore, novel proteins have been shown to be released from transgenic plants into the soil ecosystem, and their presence can influence the biodiversity of the microbial community by selectively stimulating the growth of organisms that can use them. Microbial diversity can be altered when associated with transgenic plants; however, these effects are both variable and transient. Soil- and plant-associated microbial communities are influenced not only by plant species and transgene insertion but also by environmental factors such as field site and sampling date. Minor alterations in the diversity of the microbial community could affect soil health and ecosystem functioning, and therefore, the impact that plant variety may have on the dynamics of the rhizosphere microbial populations and in turn plant growth and health and ecosystem sustainability, requires further study.  相似文献   

10.
Tiered testing for the effects of chemicals on aquatic ecosystems has begun to include tests at the ecosystem level as a component in pesticide regristration. Because such tests are expensive, regulators and industry need to know what additional information they can gain from such tests relative to the costs of the simpler single-species toxicity bioassays. Requirements for ecosystem-level testing have developed because resource managers have not fully understood the implications of potential damage to resources without having evaluations of the predicted impacts under field conditions. We review approaches taken in the use of experimental ecosystems, discuss benefits and limitations of small- and large-scale ecosystem tests, and point to correlative approaches between laboratory and field toxicity testing.Laboratory experimental ecosystems (microcosms) have been successfully used to measure contaminant bioavailability, to determine routes of uptake in moderately complex aquatic systems, and to isolate factors modifying contaminant uptake into the biota. Such factors cannot be as readily studied in outdoor experimental ecosystems because direct cause-and-effect relations are often confounded and difficult to isolate. However, laboratory tests can be designed to quantify the relations among three variables: known concentrations of Stressors; specific sublethal behavioral, biochemical, and physiological effects displayed by organisms; and responses that have been observed in ecosystem-level analyses. For regulatory purposes, the specificity of test results determines how widely they can be applied. Ecotoxicological research should be directed at attempts to identify instances where single-species testing would be the appropriate level of analysis for identifying critical ecological endpoints and for clarifying relationships between ecosystem structure and function, and where it would be inadequate for a given level of analysis.  相似文献   

11.
Recent research has emphasized the importance of riparian ecosystems as centers of biodiversity and links between terrestrial and aquatic systems. Riparian ecosystems also belong among the environments that are most disturbed by humans and are in need of restoration to maintain biodiversity and ecological integrity. To facilitate the completion of this task, researchers have an important function to communicate their knowledge to policy-makers and managers. This article presents some fundamental qualities of riparian systems, articulated as three basic principles. The basic principles proposed are: (1) The flow regime determines the successional evolution of riparian plant communities and ecological processes. (2) The riparian corridor serves as a pathway for redistribution of organic and inorganic material that influences plant communities along rivers. (3) The riparian system is a transition zone between land and water ecosystems and is disproportionately plant species-rich when compared to surrounding ecosystems. Translating these principles into management directives requires more information about how much water a river needs and when and how, i.e., flow variables described by magnitude, frequency, timing, duration, and rate of change. It also requires information about how various groups of organisms are affected by habitat fragmentation, especially in terms of their dispersal. Finally, it requires information about how effects of hydrologic alterations vary between different types of riparian systems and with the location within the watershed.  相似文献   

12.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   

13.
Germination tests for assessing biochar quality   总被引:8,自引:0,他引:8  
Definition, analysis, and certification of biochar quality are crucial to the agronomic acceptance of biochar. While most biochars have a positive impact on plant growth, some may have adverse effects due to the presence of phytotoxic compounds. Conversely, some biochars may have the ability to adsorb and neutralize natural phytotoxic compounds found in soil. We evaluated the effects of biochars on seedling growth and absorption of allelochemicals present in corn ( L.) residues. Corn seeds were germinated in aqueous extracts of six biochars produced from varied feedstocks, thermochemical processes, and temperatures. Percent germination and shoot and radicle lengths were evaluated at the end of the germination period. Extracts from the six biochars had no effect on percent germination; however, extracts from three biochars produced at high conversion temperatures significantly inhibited shoot growth by an average of 16% relative to deionized (DI) water. Polycyclic aromatic hydrocarbons detected in the aqueous extracts are believed to be at least partly responsible for the reduction in seedling growth. Repeated leaching of biochars before extract preparation eliminated the negative effects on seedling growth. Biochars differ significantly in their capacity to adsorb allelochemicals present in corn residues. Germination of corn seeds in extracts of corn residue showed 94% suppression of radicle growth compared to those exposed to DI water; however, incubation of corn residue extracts with leached biochar for 24 h before initiating the germination test increased radicle length 6 to 12 times compared to the corn residue extract treatments. Germination tests appear to be a reliable procedure to differentiate between effects of different types of biochar on corn seedling growth.  相似文献   

14.
Isla Victoria (Nahuel Huapi National Park, Argentina), a large island dominated by native Nothofagus and Austrocedrus forest, has old plantations of many introduced tree species, some of which are famed invaders of native ecosystems elsewhere. There are also large populations of introduced deer and shrubs that may interact in a complex way with the introduced trees, as well as a recently arrived population of wild boar. Long-standing concern that the introduced trees will invade and transform native forest may be unwarranted, as there is little evidence of progressive invasion, even close to the plantations, despite over 50 years of opportunity. Introduced and native shrubs allow scattered introduced trees to achieve substantial size in abandoned pastures, but in almost all areas neither the trees nor the shrubs appear to be spreading beyond these sites. These shrub communities may be stable rather than successional, but the technology for restoring them to native forest is uncertain and probably currently impractical. Any attempt to remove the exotic tree seedlings and saplings from native forest would probably create the very conditions that would favor colonization by exotic plants rather than native trees, while simply clear-cutting the plantations would be unlikely to lead to regeneration of Nothofagus or Austrocedrus. The key to maintaining native forest is preventing catastrophic fire, as several introduced trees and shrubs would be favored over native dominant trees in recolonization. Deer undoubtedly interact with both native and introduced trees and shrubs, but their net effect on native forest is not yet clear, and specific management of deer beyond the current hunting by staff is unwarranted, at least if preventing tree invasion is the goal. The steep terrain and shallow soil make the recently arrived boar a grave threat to the native forest. Eradication is probably feasible and should be attempted quickly.  相似文献   

15.
唐巍 《四川环境》2010,29(4):100-105
对川东北-川西输气联络线工程对四川驷马省级自然保护区自然资源、自然生态系统和主要保护对象的影响进行了评估。其主要结论是:在施工期,四川驷马自然保护区的森林面积将减少,水体质量将降低,部分野生动物将受到损伤或远离现有的栖息地,部分植物个体将被采伐,生态系统结构将发生变化,主要保护对象也将受到一定的影响;在运营期,四川驷马自然保护区自然资源、自然生态系统和主要保护对象受联络线工程的影响较轻。为了减轻影响,从控制影响因素方面提出了一些建议。  相似文献   

16.
Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. Weed biological control offers opportunities to arrest or even reverse these trends and, although it is not always effective or appropriate as a management strategy, this practice has an excellent record of safety and many notable successes over two centuries. In recent years, growing concerns about the potential for unintended, non-target damage by biological control agents, and fears about other unpredictable effects on ecosystems, have created an increasingly demanding risk-averse regulatory environment. This development may be counter-productive because it tends to overemphasize potential problems and ignores or underestimates the benefits of weed biological control; it offers no viable alternatives; and it overlooks the inherent risks of a decision not to use biological control. The restoration of badly degraded ecosystems to a former pristine condition is not a realistic objective, but the protection of un-invaded or partial restoration of invaded ecosystems can be achieved safely, at low cost and sustainably through the informed and responsible application of biological control. This practice should therefore be given due consideration when management of invasive alien plants is being planned. This discussion paper provides a perspective on the risks and benefits of classical weed biological control, and it is aimed at assisting environmental managers in their deliberations on whether or not to use this strategy in preference, or as a supplement to other alien invasive plant control practices.  相似文献   

17.
The environmental risks caused by the use of fluoroquinolone antibiotics in human therapeutics and animal husbandry are associated with their persistence and (bio)accessibility in soil. To assess these aspects, we administered difloxacin to pigs and applied the contaminated manure to soil. We then evaluated the dissipation and sequestration of difloxacin in soil in the absence and presence of plants within a laboratory trial, a mesocosm trial, and a field trial. A sequential extraction yielded antibiotic fractions of differing binding strength. We also assessed the antibiotic's effects on nitrogen turnover in soil (potential nitrification and denitrification). Difloxacin was hardly (bio)accessible and was very persistent under all conditions studied (dissipation half-life in bulk soil, >217 d), rapidly forming nonextractable residues. Although varying environmental conditions did not affect persistence, dissipation was accelerated in soil surrounding plant roots. Effects on nitrogen turnover were limited due to the compound's strong binding and small (bio)accessibility despite its persistence.  相似文献   

18.
The present review aims to summarize current knowledge in the topic of wood ash application to boreal forest and aquatic ecosystems, and the different effects derived from these actions. Much research has been conducted regarding the effects of wood ash application on forest growth. Present studies show that, generally speaking, forest growth can be increased on wood ash-ameliorated peatland rich in nitrogen. On mineral soils, however, no change or even decreased growth have been reported. The effects on ground vegetation are not very clear, as well as the effects on fungi, soil microbes, and soil-decomposing animals. The discrepancies between different studies are for the most part explained by abiotic factors such as variation in fertility among sites, different degrees of stabilization, and wood ash dosage used, and different time scales among different studies. The lack of knowledge in the field of aquatic ecosystems and their response to ash application is an important issue for future research. The few studies conducted have mainly considered changes in water chemistry. The biotoxic effects of ash application can roughly be divided into two categories: primary and secondary. Among the primary effects is toxicity deriving from compounds in the wood ash and cadmium is probably the worst among these. The secondary effects of wood ash are generally due to its alkaline capacity and a release of ions into the soil and soil water, and finally, watercourses and lakes. Given current knowledge, we would recommend site- and wood ash-specific application practices, rather than broad and general guidelines for wood ash application to forests.  相似文献   

19.
With the advent of modern sanitary landfill closure techniques, the opportunity exists for transforming municipal landfills into urban woodlands. While costs of fullscale reforestation are generally prohibitive, a modest planting of clusters of trees and shrubs could initiate or accelerate population expansions and natural plant succession from open field to diverse forest. However, among woody species that have been screened for use on landfills, these ecological potentials have not yet been investigated. We examined a 14-yr-old landfill plantation in New Jersey, USA, established to test tolerance of 19 species of trees and shrubs to landfill environments. We measured survivorship, reproduction, and recruitment within and around the experimental installation. Half of the original 190 plants were present, although survival and growth rates varied widely among species. An additional 752 trees and shrubs had colonized the plantation and its perimeter, as well as 2955 stems of vines. However, the great majority (>95%) of woody plants that had colonized were not progeny of the planted cohort, but instead belonged to 18 invading species, mostly native, bird-dispersed, and associated with intermediate stages of secondary plant succession. Based on this evidence, we recommend that several ecological criteria be applied to choices of woody species for the restoration of municipal landfills and similar degraded sites, in order to maximize rapid and economical establishment of diverse, productive woodlands.  相似文献   

20.
This research studied possible benefits of indoor plants on attention capacity in a controlled laboratory experiment. Participants were 34 students randomly assigned to one of two conditions: an office setting with four indoor plants, both flowering and foliage, or the same setting without plants. Attention capacity was assessed three times, i.e. immediately after entering the laboratory, after performing a demanding cognitive task, and after a five-minute break. Attention capacity was measured using a reading span test, a dual processing task known to tap the central executive function of attention. Participants in the plant condition improved their performance from time one to two, whereas this was not the case in the no-plant condition. Neither group improved performance from time two to three. The results are discussed in the context of Attention Restoration Theory and alternative explanations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号