首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a notorious rangeland weed that exhibited regional declines in the early 2000s, attributed to drought by some and to successful biocontrol by others. We initiated an experiment to quantify the effects of the biocontrol agent, Cyphocleonus achates, on Ce. stoebe and its interaction with a dominant native grass competitor, Pseudoroegneria spicata, under contrasting precipitation conditions. Plots containing monocultures of each plant species or equal mixtures of the two received factorial combinations of Cy. achates herbivory (exclusion or addition) and precipitation (May-June drought or "normal," defined by the 50-year average) for three years. Cy. achates herbivory reduced survival of adult Ce. stoebe plants by 9% overall, but this effect was stronger under normal precipitation compared to drought conditions, and stronger in mixed-species plots compared to monocultures. Herbivory had no effect on Ce. stoebe per capita seed production or on recruitment of seedlings or juveniles. In normal-precipitation plots of mixed composition, greater adult mortality due to Cy. achates herbivory resulted in increased recruitment of new adult Ce. stoebe. Due to this compensatory response to adult mortality, final Ce. stoebe densities did not differ between herbivory treatments regardless of context. Experimental drought reduced adult Ce. stoebe survival in mixed-species plots but did not impede recruitment of new adults or reduce final Ce. stoebe densities, perhaps due to the limited duration of the treatment. Ce. stoebe strongly depressed P. spicata reproduction and recruitment, but these impacts were not substantively alleviated by herbivory on Ce. stoebe. Population-level compensation by dominant plants may be an important factor inhibiting top-down effects in herbivore-driven and predator-driven cascades.  相似文献   

2.
Preisser EL  Elkinton JS 《Ecology》2008,89(10):2671-2677
Although biological invasions are of considerable concern to ecologists, relatively little attention has been paid to the potential for and consequences of indirect interactions between invasive species. Such interactions are generally thought to enhance invasives' spread and impact (i.e., the "invasional meltdown" hypothesis); however, exotic species might also act indirectly to slow the spread or blunt the impact of other invasives. On the east coast of the United States, the invasive hemlock woolly adelgid (Adelges tsugae, HWA) and elongate hemlock scale (Fiorinia externa, EHS) both feed on eastern hemlock (Tsuga canadensis). Of the two insects, HWA is considered far more damaging and disproportionately responsible for hemlock mortality. We describe research assessing the interaction between HWA and EHS, and the consequences of this interaction for eastern hemlock. We conducted an experiment in which uninfested hemlock branches were experimentally infested with herbivores in a 2 x 2 factorial design (either, both, or neither herbivore species). Over the 2.5-year course of the experiment, each herbivore's density was approximately 30% lower in mixed- vs. single-species treatments. Intriguingly, however, interspecific competition weakened rather than enhanced plant damage: growth was lower in the HWA-only treatment than in the HWA + EHS, EHS-only, or control treatments. Our results suggest that, for HWA-infested hemlocks, the benefit of co-occurring EHS infestations (reduced HWA density) may outweigh the cost (increased resource depletion).  相似文献   

3.
The threat posed by invasive nonnative plants to native plant populations is one of the largest challenges facing both conservation biology and restoration ecology. California has been highly impacted by invaders, although many relict stands of native plants are found on shallow, rocky soils with limited resources. The abiotic conditions of these sites may strongly influence the performance of an invasive plant and its effect on resident native species. In addition, the maturity of native plants in these sites may modulate an invader's impact; larger, well-established plants may be better able to resist invaders. In this study we examined how the impact of an invasive thistle (Centaurea solstitialis) on a native perennial bunchgrass (Nassella pulchra) changed in response to variation in soil depth, soil water availability, and bunchgrass maturity. We measured plant performance in terms of survival, growth, reproduction, and predawn water potential. We found that soil depth, water availability, and bunchgrass maturity acted in concert to influence the impact of the invasive thistle on the native bunchgrass. Both species performed better in deep soils, especially during dry years. The combination of shallow soil and low water availability reduced C. solstitialis performance and ameliorated its negative effect on N. pulchra growth and reproduction. Higher water availability resulted in a stronger negative effect of C. solstitialis on N. pulchra in both shallow and deep soils. However, as N. pulchra matured and increased in size, we saw a steady decline in C. solstitialis growth and reproductive output. Higher water availability increased the performance of C. solstitialis in shallow soils. C. solstitialis may thus have a stronger impact on N. pulchra and be more able to invade relict stands of N. pulchra in shallow soils during high-rainfall years. However, established stands of N. pulchra appear to be more resistant to invasion by C. solstitialis as N. pulchra plants grow older and larger.  相似文献   

4.
Invasive plants may have variable effects within a given environment depending on their interactions with the dominant native species, yet little research has examined such species-species interactions within a site. Savanna trees with nonoverlapping canopies offer an ideal opportunity to assess associated changes in the ecosystem processes that result from interactions between an invasive species and different native tree species. We examined the influence of the exotic invasive shrub Lonicera maackii on decomposition dynamics under three native tree species: Fraxinus quadrangulata, Quercus muehlenbergii, and Carya ovata. Litter decomposition rates and litter C and N were evaluated over two years using single- and mixed-species litterbags (L. maackii and individual tree species litter); microarthropod abundance was measured at 6 weeks using Tulgren funnels. Litter from the invasive L. maackii decomposed and lost N more rapidly than the litter of the three native tree species. The rate at which L. maackii decomposed depended on its location, with L. maackii litter decomposing and losing N more rapidly under C. ovata than under the other two native tree species. Mixing L. maackii with the native species' litter did not accelerate litter mass loss overall but did result in synergistic N losses at variable times throughout the experiment, further highlighting the variable interaction between native species and L. maackii. Nitrogen loss was significantly higher than expected in mixtures of C. ovata + L. maackii litter at 6 weeks, in F. quadrangulata + L. maackii litter at 12 weeks, and in Q. muehlenbergii + L. maackii litter at 24 weeks. If the effects of invasive species on certain ecosystem processes, such as litter decomposition, are strongly influenced by their association with native species, this could suggest the need for a more nuanced understanding of the vulnerability of ecosystem processes to invasions of L. maackii and potentially other invasive species.  相似文献   

5.
Orrock JL  Witter MS  Reichman OJ 《Ecology》2008,89(4):1168-1174
Biological invasions can change ecosystem function, have tremendous economic costs, and impact human health; understanding the forces that cause and maintain biological invasions is thus of immediate importance. A mechanism by which exotic plants might displace native plants is by increasing the pressure of native consumers on native plants, a form of indirect interaction termed "apparent competition." Using experimental exclosures, seed addition, and monitoring of small mammals in a California grassland, we examined whether exotic Brassica nigra increases the pressure of native consumers on a native bunchgrass, Nassella pulchra. Experimental plots were weeded to focus entirely on indirect effects via consumers. We demonstrate that B. nigra alters the activity of native small-mammal consumers, creating a gradient of consumption that dramatically reduces N. pulchra establishment. Previous work has shown that N. pulchra is a strong competitor, but that it is heavily seed limited. By demonstrating that consumer pressure is sufficient to curtail establishment, our work provides a mechanism for this seed limitation and suggests that, despite being a good competitor, N. pulchra cannot reestablish close to B. nigra within its old habitats because exotic-mediated consumption preempts direct competitive exclusion. Moreover, we find that apparent competition has a spatial extent, suggesting that consumers may dictate the rate of invasion and the area available for restoration, and that nonspatial studies of apparent competition may miss important dynamics.  相似文献   

6.
Capers RS  Selsky R  Bugbee GJ  White JC 《Ecology》2007,88(12):3135-3143
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion.  相似文献   

7.
Prior KM  Hellmann JJ 《Ecology》2010,91(11):3284-3293
Phytophagous insects commonly interact through shared host plants. These interactions, however, do not occur in accordance with traditional paradigms of competition, and competition in phytophagous insects is still being defined. It remains unclear, for example, if particular guilds of insects are superior competitors or important players in structuring insect communities. Gall-forming insects are likely candidates for such superior competitors because of their ability to manipulate host plants, but their role as competitors is understudied. We investigate the effect of invasive populations of an oak gall wasp, Neuroterus saltatorius, on a native specialist butterfly, Erynnis propertius, as mediated by their shared host plant, Quercus garryana. This gall wasp occurs at high densities in its introduced range, where we stocked enclosures with caterpillars on trees that varied in gall wasp density. Biomass production of butterflies was lower in enclosures on high-density than on low-density trees because overwintering caterpillars were smaller, and fewer of them eclosed into adults the following spring. To see if the gall wasp induced changes in foliar quality, we measured host plant quality before and after gall induction on 30 trees each at two sites. We found a positive relationship between gall wasp density and the percentage change in foliar C:N, a negative relationship between gall wasp density and the percentage change in foliar water at one site, and no relationship between the percentage change in protein-binding capacity (i.e., phenolics) and gall-wasp density. Additionally, there was a negative relationship between foliar quality and butterfly performance. Our results provide evidence for a plant-mediated impact of an invasive oak gall wasp on a native butterfly and suggest that gall wasps could act as superior competitors, especially when they occur at high densities.  相似文献   

8.
Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North America's most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to na?ve native mutualists in the introduced range and indirectly suppress the plants that rely on them.  相似文献   

9.
Preston DL  Henderson JS  Johnson PT 《Ecology》2012,93(6):1254-1261
With many ecosystems now supporting multiple nonnative species from different trophic levels, it can be challenging to disentangle the net effects of invaders within a community context. Here, we combined wetland surveys with a mesocosm experiment to examine the individual and combined effects of nonnative fish predators and nonnative bullfrogs on aquatic communities. Among 139 wetlands, nonnative fish (bass, sunfish, and mosquitofish) negatively influenced the probability of occupancy of Pacific treefrogs (Pseudacris regilla), but neither invader correlated strongly with occupancy by California newts (Taricha torosa), western toads (Anaxyrus boreas), or California red-legged frogs (Rana draytonii). In mesocosms, mosquitofish dramatically reduced the abundance of zooplankton and palatable amphibian larvae (P. regilla and T. torosa), leading to increases in nutrient concentrations and phytoplankton (through loss of zooplankton), and rapid growth of unpalatable toad larvae (through competitive release). Bullfrog larvae reduced the growth of native anurans but had no effect on survival. Despite strong effects on natives, invaders did not negatively influence one another, and their combined effects were additive. Our results highlight how the net effects of multiple nonnative species depend on the trophic level of each invader, the form and magnitude of invader interactions, and the traits of native community members.  相似文献   

10.
外来入侵杂草空心莲子草对植物生物多样性的影响   总被引:2,自引:0,他引:2  
利用样方法调查了南京市空心莲子草(Alternantheraphiloxeroides)生长生境中杂草的种类和分布。结果表明,南京市秋季空心莲子草分布样点有杂草30科101种,其中以禾本科、菊科、蓼科居多。主成分分析表明,影响杂草分布的主要因素是土壤水分条件和人为干扰强度。经Q型分析, 24个样点可划分为3个聚类群:聚类群Ⅰ包括的样点均分布在路边和田边开阔地以及小河、小沟和湖的岸边,以马唐、狗尾草和牛筋草为优势种;聚类群Ⅱ的样点都是农田隔离带如田埂以及农田中的沟壑,以波斯婆婆纳、碎米莎草、野塘蒿和铁苋菜为优势种;聚类群Ⅲ的样点以菜地和果园为主,以马唐、香附子、马齿苋和黄鹌菜为优势种。分析了空心莲子草重要值与物种丰富度之间的关系,当空心莲子草重要值大于1. 5时,样方物种丰富度随重要值的增加而减小。2者之间具有显著相关性,表明空心莲子草的入侵对生物多样性有不利影响。  相似文献   

11.
Herbaceous plant production plays a key role in determining the function of rangeland ecosystems in the semi-arid and Mediterranean regions. Therefore, assessment of herbaceous plant habitats is important for understanding the ecosystem functioning in these regions and for applied purposes, such as range management and land evaluation. This paper presents a model to assess herbaceous plant habitats in a basaltic stony environment in a Mediterranean region. The model is based on geographic information systems (GIS), remote sensing and fuzzy logic, while four indirect variables, which represent major characteristics of herbaceous habitats, are modeled: rock cover fraction; wetness index (WI); soil depth; and slope orientation (aspect). A linear unmixing model was used to measure rock cover on a per pixel basis using a Landsat TM summer image. The wetness index and local aspect were determined from digital elevation data with 25 m × 25 m pixel resolution, while soil data were gathered in a field survey. The modeling approach adopted here is process-based and assumes that water availability plays a crucial role in determining herbaceous plant production in Mediterranean and semi-arid environments. The model rules are based on fuzzy logic and are written based on the hypothesized water requirements of the herbaceous vegetation. The results show that on a polygon basis there is positive agreement between the model proposed here and previous mapping of the herbaceous habitats carried out in the field using traditional methods. Intrapolygon tests show that the use of a continuous raster data model and fuzzy logic principles provide an added value to traditional mapping. Moreover, herbaceous biomass measurements at two time intervals—mid- and peak winter season—corresponded with the habitat assessment predictions achieved using a new scenario that is proposed in this research. This scenario suggests that rockiness increases herbaceous production on south-facing slopes, while in other slope aspects the rock cover has lower impact on herbaceous growth. Due to its simplicity, the model suggested here can be used by planners and managers, to adjust range activities over large areas. The process-based approach should allow adaptation of the model to other regions more effectively than models that were formulated on a purely empirical basis. The model could also be used to study the relationship between water availability and ecosystem productivity on a regional scale.  相似文献   

12.
The effects of invasive nonnative species on community composition are well documented. However, few studies have determined the mechanisms by which invaders drive these changes. The literature indicates that many nonnative plant species alter light availability differently than natives in a given community, suggesting that shading may be such a mechanism. We compared light quantity (photosynthetically active radiation, PAR) and quality (red: far-red ratio, R:Fr) in riparian reaches heavily invaded by a nonnative tree (Acer platanoides) to that in an uninvaded forest and experimentally tested the effects of our measured differences in PAR and R:Fr on the survival, growth, and biomass allocation of seedlings of the dominant native species and Acer platanoides. Light conditions representative of the understory of Acer platanoides-invaded forest decreased survival of the native maple Acer glabrum by 28%; Amelanchier alnifolia by 32%; Betula occidentalis by 55%; Elymus glaucus by 46%; and Sorbus aucuparia by 52%, relative to seedlings growing in PAR similar to that of native understories. In contrast, Acer platanoides and the native shrub Symphoricarpos albus were not affected by reductions in PAR. Acer platanoides seedlings and saplings are uniquely adapted to shade relative to native species. Acer platanoides was the only species tested that decreased allocation to roots relative to shoots in the invaded forest vs. the native forest light conditions. Therefore it was the only species to demonstrate an adaptive response to the particular light environment associated with Acer platanoides invasion as predicted by optimal partitioning theory. The profound change in light quantity associated with Acer platanoides canopies appears to act as an important driver of native suppression and conspecific success in invaded riparian communities. Further research is necessary to determine whether the effect of nonnative plant-driven changes on light quantity and quality is a widespread mechanism negatively affecting resident species and facilitating invasion by nonnatives.  相似文献   

13.
Direct and indirect effects of ants on a forest-floor food web   总被引:1,自引:0,他引:1  
Moya-Laraño J  Wise DH 《Ecology》2007,88(6):1454-1465
Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG predator groups with disparate predatory behaviors, complexities that will have consequences for functioning of the forest-floor food web.  相似文献   

14.
Parker IM  Gilbert GS 《Ecology》2007,88(5):1210-1224
An important question in the study of biological invasions is the degree to which successful invasion can be explained by release from control by natural enemies. Natural enemies dominate explanations of two alternate phenomena: that most introduced plants fail to establish viable populations (biotic resistance hypothesis) and that some introduced plants become noxious invaders (natural enemies hypothesis). We used a suite of 18 phylogenetically related native and nonnative clovers (Trifolium and Medicago) and the foliar pathogens and invertebrate herbivores that attack them to answer two questions. Do native species suffer greater attack by natural enemies relative to introduced species at the same site? Are some introduced species excluded from native plant communities because they are susceptible to local natural enemies? We address these questions using three lines of evidence: (1) the frequency of attack and composition of fungal pathogens and herbivores for each clover species in four years of common garden experiments, as well as susceptibility to inoculation with a common pathogen; (2) the degree of leaf damage suffered by each species in common garden experiments; and (3) fitness effects estimated using correlative approaches and pathogen removal experiments. Introduced species showed no evidence of escape from pathogens, being equivalent to native species as a group in terms of infection levels, susceptibility, disease prevalence, disease severity (with more severe damage on introduced species in one year), the influence of disease on mortality, and the effect of fungicide treatment on mortality and biomass. In contrast, invertebrate herbivores caused more damage on native species in two years, although the influence of herbivore attack on mortality did not differ between native and introduced species. Within introduced species, the predictions of the biotic resistance hypothesis were not supported: the most invasive species showed greater infection, greater prevalence and severity of disease, greater prevalence of herbivory, and greater effects of fungicide on biomass and were indistinguishable from noninvasive introduced species in all other respects. Therefore, although herbivores preferred native over introduced species, escape from pest pressure cannot be used to explain why some introduced clovers are common invaders in coastal prairie while others are not.  相似文献   

15.
Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on detritus/algae as basal resources instead of the dominant vegetation. The reestablishment of Spartina after removal of Phragmites, however, not only returned species assemblages typical of reference (uninvaded) Spartina, but stable isotope signatures suggest that the trophic interactions among the arthropods were also similar in reestablished habitats. Specifically, both herbivores and predators showed characteristic Spartina signatures, suggesting the return of the original grazer-based food web structure in the restored habitats.  相似文献   

16.
17.
We conducted a study to determine the contribution of lethal and nonlethal effects to a predator's net effect on a prey's population growth rate in a natural setting. We focused on the effects of an invasive invertebrate predator, Bythotrephes longimanus, on zooplankton prey populations in Lakes Michigan and Erie. Field data taken at multiple dates and locations in both systems indicated that the prey species Daphnia mendotae, Daphnia retrocurva, and Bosmina longirostris inhabited deeper portions of the water column as Bythotrephes biomass increased, possibly as an avoidance response to predation. This induced migration reduces predation risk but also can reduce birth rate due to exposure to cooler temperatures. We estimated the nonlethal (i.e., resulting from reduced birth rate) and lethal (i.e., consumptive) effects of Bythotrephes on D. mendotae and Bosmina longirostris. These estimates used diel field survey data of the vertical gradient of zooplankton prey density, Bythotrephes density, light intensity, and temperature with growth and predation rate models derived from laboratory studies. Results indicate that nonlethal effects played a substantial role in the net effect of Bythotrephes on several prey population growth rates in the field, with nonlethal effects on the same order of magnitude as or greater (up to 10-fold) than lethal effects. Our results further indicate that invasive species can have strong nonlethal, behaviorally based effects, despite short evolutionary coexistence with prey species.  相似文献   

18.
Carey MP  Wahl DH 《Ecology》2010,91(10):2965-2974
Aquatic communities have been altered by invasive species, with impacts on native biodiversity and ecosystem function. At the same time, native biodiversity may mitigate the effects of an invader. Common carp (Cyprinus carpio) is a ubiquitous, invasive fish species that strongly influences community and ecosystem processes. We used common carp to test whether the potential effects of an invasive species are altered across a range of species diversity in native communities. In mesocosms, treatments of zero, one, three, and six native fish species were used to represent the nested subset patterns observed in fish communities of lakes in Illinois, USA. The effect of the invader was tested across fish richness treatments by adding common carp to the native community and substituting native biomass with common carp. Native species and intraspecific effects reduced invader growth. The invader reduced native fish growth; however, the negative effect was minimized with increasing native richness. The zooplankton grazer community was modified by a top-down effect from the invader that increased the amount of phytoplankton. Neither the invader nor richness treatments influenced total phosphorus or community metabolism. Overall, the invader reduced resources for native species; and the effect scaled with how the invader was incorporated into the community. Higher native diversity mitigated the impact of the invader, confirming the need to consider biodiversity when predicting the impacts of invasive species.  相似文献   

19.
Lau JA 《Ecology》2008,89(4):1023-1031
Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.  相似文献   

20.
Lau JA  McCall AC  Davies KF  McKay JK  Wright JW 《Ecology》2008,89(3):754-762
Biotic interactions, such as competition and herbivory, can limit plant species ranges to a subset of edaphically suitable habitats, termed the realized niche. Here we explored the role that herbivores play in restricting the niche of serpentine ecotypes of the native California annual Collinsia sparsiflora. We planted seeds from four populations into a range of natural field environments that varied in the presence/absence of naturally occurring C. sparsiflora and in predicted suitability for growth and survival of the serpentine ecotype of C. sparsiflora. Path analysis was then used to model the direct and herbivore-mediated indirect effects of environmental variables on the survival of C. sparsiflora serpentine ecotypes. We found that C. sparsiflora received more herbivory when planted into areas where serpentine ecotypes of C. sparsiflora were not predicted to persist, and that increased herbivory was associated with decreased survival, suggesting that herbivores may limit the distribution of C. sparsiflora serpentine ecotypes. Additionally, we demonstrated that edaphic environmental variables impacted the survival of C. sparsiflora serpentine ecotypes both directly and indirectly, by altering interactions with herbivores. These indirect effects were probably trait-mediated and probably occurred because edaphic factors may influence plant traits that, in turn, alter attractiveness to herbivores. Although the magnitude of direct effects exceeded the magnitude of indirect effects, many strong herbivore-mediated indirect effects were detected. Thus, interactions between the abiotic environment and insect herbivory contributed to restricting the niche of C. sparsiflora serpentine ecotypes to a subset of available habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号