共查询到16条相似文献,搜索用时 93 毫秒
1.
为合理评估PM2.5污染,通过Meta分析,系统回顾已有文献并对中国人群的PM2.5健康效应进行定量评估.在此基础上,综合运用Benmap模型和CGE模型,估计2017年全国PM2.5污染造成的国民经济影响.结果表明,中国PM2.5污染造成的全因早逝、慢性阻塞性肺病(住院)、脑卒中(住院)、缺血性心脏病(住院)、心血管疾病(门诊)、呼吸系统疾病(门诊)OR值分别为1.007(95% CI:1.005,1.009)、1.014(95% CI:1.009,1.019)、1.006(95% CI:1.002,1.011)、1.007(95% CI:1.005,1.010)、1.006(95% CI:1.002,1.010)、1.006(95% CI:1.004,1.008)(per 10μg/m3).2017年,PM2.5污染引起的中国年均劳动损失为2590.34万d,居民额外医疗支出为86.39亿元,造成的经济损失约占当年GDP的1.48%. 相似文献
2.
基于2017年全国1365个监测站点的实时监测数据,运用空间数据统计模型揭示近地面臭氧(O3)污染的时空分布格局,并利用BenMap工具在10km×10km空间网格尺度上估计O3污染的健康损失和健康经济价值.结果表明,O3浓度具有较强的季节性变化,呈倒"V"型变化趋势,在空间分布上呈现明显的集聚性,即高值或低值区域集中分布,具有较强的空间正相关性;通过O3暴露系数模拟人群室内、室外O3暴露情况,在统计意义上估计得到2017年O3污染共计造成我国全因早逝人数98473例(95%置信区间:53419~143292),其中心血管疾病早逝风险约占45%,以不同学者估算得到的单位统计生命价值为基础,估计得到的健康经济损失在197~978亿元之间,约占2017年全国GDP的0.05%~0.26%. 相似文献
3.
4.
以ArcGIS软件为平台,采用唐山市206个在线监测点数据,分析了PM2.5在采暖期、重污染期、非采暖期3个时期的全局和局部空间自相关性,研究其大气污染空间分布特征.结果表明,3个时期均具有一定的空间自相关性,且重污染期的全局空间自相关最强;采暖期和重污染期PM2.5高值聚类主要发生在中部地区,低值聚类则主要分布在北部山区及沿海少部分区域;非采暖期高值聚类主要分布在丰润区和丰南区,低值聚类发生在遵化市北部地区.通过空间插值模拟全市的PM2.5分布状况,结果显示唐山市在重污染期PM2.5均值最高格点值达241μg/m3,而非采暖期最低值只有37μg/m3;基于PM2.5浓度变化特征和空间分布,将唐山所辖18个区县划分为5个区域,针对各区域提出PM2.5分区管控措施建议. 相似文献
5.
中国PM2.5污染空间分布的社会经济影响因素分析 总被引:1,自引:0,他引:1
中国的细颗粒物(PM_(2.5))污染具有危害性强、覆盖范围大、空间分布不均匀的特点.本研究以2015年中国PM_(2.5)监测站点数据为基础,尝试结合空间分析的方法,对PM_(2.5)污染空间分布的社会经济影响因素进行分析.首先以省级行政区划为基本单元,选取Moran's I指数和局部自相关指数(LISA)分析PM_(2.5)在国家尺度上的分布特征.然后利用普通最小二乘回归模型(OLS)和地理加权回归模型(GWR)分析PM_(2.5)浓度的空间分布和各项社会经济指标的相关性.结果表明,GWR模型比OLS模型更好地揭示出PM_(2.5)浓度分布和各项因素之间的关系.PM_(2.5)浓度在空间分布上存在以京津冀为中心的高浓度聚集区向四周逐渐递减,在广西、四川等南部省份形成低浓度聚集区的空间分布结构.另外,森林覆盖率和人均电力消费量与PM_(2.5)浓度显著负相关,人均私家车保有量和PM_(2.5)浓度显著正相关,其中人均私家车保有量是对PM_(2.5)浓度影响最大的因素. 相似文献
6.
为了解陕西省PM2.5分布特征及影响因素区域差异,基于陕西省2019年PM2.5浓度数据,采用空间数据统计方法、空间自相关分析法和地理探测器法对PM2.5时空分异特征及驱动因素进行探究,以期为陕西省PM2.5研究与治理提供可靠的科学依据。结果表明:陕西省PM2.5污染呈“冬高夏低”、“中部高、南北低”的特点。陕西省PM2.5浓度空间分布表现为极显著的空间正相关性,陕南部分县域为低低聚集区,关中地区渭南、西安、咸阳部分县域为高高聚集区。对陕西省PM2.5浓度影响最大的是社会经济因子(0.328—0.548),陕北地区为GDP(0.932),关中地区为人口密度(0.936),陕南地区为相对湿度(0.710)。交互探测结果表明:陕西省主导交互因子为人口密度∩GDP,各种复杂的自然因素和人为活动因素耦合会大大加强对PM2.5浓度的解释力。 相似文献
7.
基于实时监测和遥感反演数据,利用空间自相关分析和空间回归分析等方法,探讨了汾渭平原2015~2017年PM2.5浓度时空变化规律和影响因素,揭示了各因素的空间溢出效应.结果表明:(1)2015~2017年汾渭平原PM2.5浓度逐年上升,主要由采暖期(11月~次年3月)的快速上升引起,非采暖期(4~10月)年际变化不大.(2)PM2.5月均浓度变化曲线呈底部宽缓的U型,采暖期PM2.5污染明显高于非采暖期,超标天数占全年总超标天数比例由2015年的75.0%上升到2017年的83.4%.(3)2015~2017年,除铜川和三门峡外,各城市PM2.5浓度都有不同程度的上升.咸阳至运城间的平原地区和洛阳盆地污染最严重,已形成连片的高污染区域,且区域内城乡差异小.临汾及其上游平原地区其次,但主要分布在城镇,城乡差异较大.(4)空间回归分析表明,汾渭平原PM2.5浓度有显著的空间溢出效应.年均气温、城镇化率、能源消费指数和年均人口不仅与本地PM2.5浓度有显著的正相关,而且会加重邻近地区PM2.5污染.年降水量和地形起伏度则不仅与本地PM2.5浓度有显著的负相关,而且能降低邻近地区PM2.5浓度.风的传输作用能加重本地PM2.5污染,植被覆盖度能消减本地PM2.5浓度,但其间接效应都不显著. 相似文献
8.
基于Grossman健康生产函数,利用2008~2017年全国280个城市的面板数据,以PM2.5为空气污染的代表指标,探讨中国空气污染与公共健康之间的动态关系,考虑到公共健康的空间效应,采用空间计量模型进行实证研究.结果表明,在未考虑空间效应的情况下,PM2.5浓度每增加1%,城市总人口死亡率增加0.040%;考虑空间效应后,PM2.5浓度每增加1%,城市总人口死亡率增加0.0606%.PM2.5污染对公共健康具有显著的负面影响,由于存在空间溢出效应,PM2.5污染对城市公共健康水平的影响程度增加,表明忽视空间相关性的存在,会低估PM2.5污染对公众健康的影响;而经济发展水平的提高以及产业结构的调整对公共健康有较强的改善作用. 相似文献
9.
基于Grossman健康生产函数,利用2008~2017年全国280个城市的面板数据,以PM2.5为空气污染的代表指标,探讨中国空气污染与公共健康之间的动态关系,考虑到公共健康的空间效应,采用空间计量模型进行实证研究.结果表明,在未考虑空间效应的情况下,PM2.5浓度每增加1%,城市总人口死亡率增加0.040%;考虑空间效应后,PM2.5浓度每增加1%,城市总人口死亡率增加0.0606%.PM2.5污染对公共健康具有显著的负面影响,由于存在空间溢出效应,PM2.5污染对城市公共健康水平的影响程度增加,表明忽视空间相关性的存在,会低估PM2.5污染对公众健康的影响;而经济发展水平的提高以及产业结构的调整对公共健康有较强的改善作用. 相似文献
10.
PM2.5时空分异特征认知对大气污染联防联控意义重大,本文从空间多尺度的视角出发,利用空间模式分析方法与地理探测器,对2011~2017年中国大陆地区PM2.5年均浓度时空分布格局及成因进行探究,从而揭示PM2.5多尺度时空分异特征.结果表明:①2011~2017年PM2.5年均浓度相对稳定,无明显趋势,国家与区域尺度PM2.5变化特征基本一致,呈现"W"型变化,整体上看,污染程度由高到低依次为:中部、东部、西部与东北.②由空间模式分析结果可知,高值聚集区主要位于中国的东部、中部以及新疆的西南地区,低值聚集区则集中在青藏、云贵高原以及大兴安岭地区.③地理探测器分析结果证实:城市化因素中人口密度是国家与区域尺度上PM2.5时空分异的主导因素,同时,产业、能耗与交通因素对PM2.5分布格局存在不同程度影响.在区域尺度上,除了人口密度因素之外,工业用电量与公车总量对中部地区PM2.5年均浓度影响较大,东部地区是工业烟粉尘排放量与道路面积,东北地区则为第二产业产值占比与城市绿地率,社会经济因素对西部地区的PM2.5年均浓度影响不显著. 相似文献
11.
基于流行病学综合研究成果,运用环境健康风险评估技术和环境价值评估方法,对京津冀地区实施并达到2012年新颁布的《空气质量标准》中细颗粒物(PM2.5)浓度标准可实现的健康效益进行了评估,并对区域内各城市的健康效益进行了比较分析.结果表明,京津冀地区能够实现的健康效益总和可达到612~2560亿元/a(均值为1729亿元/a),相当于该地区2009年地方生产总值的1.66%~6.94%(均值为4.68%).其中河北省所能实现的总健康效益最大,北京、天津和石家庄这些大城市能够实现的健康改善和经济效益最为显著.本文的研究结果可望为实施PM2.5空气质量标准的成本效益分析提供科学依据,并为大气污染区域联防联控和环境质量管理与合作提供重要的政策决策参考. 相似文献
12.
利用重污染城市临汾多个站点2018~2019年的PM2.5浓度监测数据,分析了不同季节临汾市PM2.5污染特征及其空间自相关度和集聚模式,最后引入多站受体模型分析临汾市PM2.5潜在源区.研究发现,临汾市的PM2.5污染主要集中在临汾盆地内的8个区县,包括尧都、襄汾、洪洞、霍州、侯马、古县、曲沃和翼城,这8个区县的PM2.5年平均浓度均超过50μg/m3,冬季平均浓度均超过100μg/m3.PM2.5空间分布特征与地形关系密切,临汾盆地内的8个站点空间自相关度很高,PM2.5高浓度区(高-高聚类)主要集中在盆地内部,说明邻近区县污染是临汾市主城区PM2.5浓度居高不下的重要原因.结合多站混合受体模型(MS-PSCF和MS-CWT)分析临汾PM2.5潜在源区,发现临汾市春季的潜在源主要集中在东北、西南和东南部,大部分为中远距离传播;在夏季,潜在源影响明显低于其他3个季节,主要在东部;秋季的潜在源主要集中在西南方向的一些地区;冬季的潜在源主要集中在东南和西南方向以及临汾市北部近距离区域.除夏季外,其他3季共同的潜在源区是陕西中南部地区(位于西南方向),且PSCF值均超过了0.7,说明在西南风时,临汾市发生污染的概率超过70%. 相似文献
13.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中. 相似文献
14.
使用中尺度气象-化学耦合模式WRF-Chem针对MEIC源清单中五大部门来源(工业源、电力源、民用源、交通源和农业源)对华东地区PM2.5的影响进行了模拟研究,主要得到以下结论:春夏秋季PM2.5约40%~60%来源于工业源,冬季由于采暖供热燃用大量散烧煤,导致民用源对PM2.5的贡献最大,在山东、安徽和江苏省等高值区贡献率超过50%;农业源、电力源和交通源对PM2.5影响的季节差异不大,农业源贡献约20%~30%,交通源和火电源贡献约10%.因此冬季需主要控制民用源排放,春夏秋季主要控制工业源排放,其次是农业源排放.一次PM2.5在工业、电力和民用源贡献的PM2.5中所占比例可达50%~60%;NO3-和NH+4在交通源贡献的PM2.5中总比例可达53%,在农业源中总比例高达93%;由于模式对SO42-模拟偏低,SO42-在工业源和电力源贡献的PM2.5中占比约5%~15%;OC对来自民用源的PM2.5有30%的贡献,BC对来自交通源的PM2.5有15%的贡献;Na+和Cl-对PM2.5的贡献在各大来源中均低于3%. 相似文献
15.
以长沙市主城区为例,在203个地面点通过加密观测并获取PM2.5浓度小时观测值,辅以同步常规稀疏国控点PM2.5浓度观测数据,在点、面尺度对比分析加密、稀疏两种观测模式下城市微环境PM2.5浓度空间分布的特征差异.结果表明:地面加密观测模式下PM2.5浓度高值区主要集中在道路、地表扬尘、住宅小区、医院和工业园等人群、车辆活动的微环境场景;低值区主要出现在公园景区等高植被覆盖度区域.同一空间点位,地面加密观测PM2.5浓度值均高于常规稀疏国控点PM2.5浓度观测值,平均高出29.71μg/m3.反距离权重空间插值制图揭示地面加密观测模式下的PM2.5浓度呈现明显的西北部高(>75μg/m3)、中部和南部居中(65~75μg/m3)、东部低(<55μg/m3)的三级阶梯式异质特征,剖面分析各向波动较大.相比,稀疏国控观测模式空间分布图仅能反映主城区PM2.5浓度整体较低(<55μg/m3)、除北-南向之外各向剖面PM2.5浓度相对无明显变化的格局.与此同时,稀疏国控观测模式在地面加密观测点估算的PM2.5浓度同样显著低于实际观测值,所揭示的研究区高值PM2.5浓度微环境为道路、地表扬尘、汽车站.研究结果证实,出于环境保护目标建立的空气质量国控监测点难以精确反映同点位近地面PM2.5浓度,所识别的城市高低PM2.5浓度值微环境与真实情景存在偏差,空气质量越优等级下偏差越大. 相似文献
16.
为探讨东北亚冬季PM2.5水溶性离子空间分布特征及来源,测定了2017~2018年沈阳冬季PM2.5水溶性离子浓度.结果显示:沈阳冬季PM2.5水溶性离子平均质量浓度为28.5±11.9μg/m3,二次离子(SO42-、NO3-和NH4+)的浓度最高,分别占总水溶性离子质量浓度的31.0%、22.4%和19.2%.运用离子化学计量学关系、相关性和主成分分析,探讨了沈阳冬季PM2.5水溶性离子的可能来源.并整合了东北亚冬季(中国东北、韩国、日本)近20a来PM2.5水溶性离子数据,发现沿着东亚冬季风,东北亚冬季PM2.5水溶性离子浓度从中国东北,经韩国海岸、韩国和济州岛,日本海岸至日本整体呈下降趋势,在韩国和日本出现局部上升,且在不同区域,不同水溶性离子占比明显不同.其中,韩国冬季PM2.5中SO42-、Ca2+和K+受外来源影响显著,NO3-和NH4+主要来自本地源,Cl-、Na+和Mg2+主要来自本地源或海源;日本中部冬季PM2.5中SO42-、NO3-、NH4+和K+主要来自本地源,Cl-、Ca2+、Na+和Mg2+主要来自本地源或海源. 相似文献