共查询到19条相似文献,搜索用时 62 毫秒
1.
基于经验模态分解和神经网络的滑坡变形预测研究 总被引:1,自引:0,他引:1
受岩土体性质和多种诱发因素(降雨、地震、库水位等)的影响,滑坡的位移演化必然包含着多层次的信息,难以采用单一的灰色预测、神经网络、时间序列等模型进行有效、准确的预测.本文引入信号分析中的经验模态分解(EMD)方法,同时结合对非线性函数具有很强的逼近能力的BP神经网络,建立了滑坡变形预测的EMD-BP神经网络模型,并以三峡库区树坪滑坡为例,应用该模型对ZG88监测点的累积位移进行了预测,最后将其预测值与实际监测值以及其他模型预测结果进行了对比分析,结果表明该模型的预测值与实际监测值基本一致,且模型预测精度比单一的BP神经网络和GM(1,1)模型要高,从而验证了该模型具有一定的适用性和较高的预测精度. 相似文献
2.
深度学习在机器视觉等各个领域的兴起,使长短时间记忆(LSTM)神经网络也越来越常用于滑坡预测工作中。为加强对历史信息的提取与捕捉,提出一种多头自注意力长短时间记忆(MHA-LSTM)神经网络用来预测滑坡位移。首先采用改进版的自适应噪声完备集合经验模态分解(ICEEMDAN)算法将滑坡位移分解成趋势项、周期项和噪声项;然后采用MHA-LSTM神经网络拟合带噪声的滑坡位移趋势项和周期项,两者相加即可得到滑坡总位移的预测结果;最后以白水河滑坡实测数据为例,考虑月降雨量和库水位因素的影响,对该滑坡位移的周期项和趋势项进行预测,并与其他传统神经网络的预测结果进行对比。结果表明:MHA-LSTM神经网络模型相较于其他传统神经网络模型,能更好地捕捉历史的信息特征,预测效果更佳,可为滑坡预测提供新的技术方法。 相似文献
3.
大气污染治理是我国实现生态文明的必经之路,制定有效性的大气治理方案,作为参考的大气污染物月均浓度预测结果是至关重要的.针对大气环境污染物月均浓度时间序列的高噪音、非平稳和非线性等特点,本文提出一种基于数据分解模式的组合预测模型.上海市的实例验证及与其他3种模型的对比研究表明:本文所提出的组合预测模型适用于政策制定所需但样本量受限的月均或年均数据预测;所提出的子序列重构的新模式比传统求和算法重构模式提高预测精度12.5%;相较于其他模型,其预测性能最优(绝对百分比误差的均值仅为9.05,且对历史拟合的皮尔逊系数均为0.90以上).实现了对大气污染物月均浓度高精度预测,可为相关政策的制定提供科学的定量参考. 相似文献
4.
为探讨冬季期间大气PM_(2.5)演化的多时间尺度效应,并阐释重度灰霾发生及演化的动力机制,该研究应用集合经验模态分解(EEMD)方法与自组织临界(SOC)理论,对成都市20171201-20180228冬季期间4个国控监测站点(即大石西路、金泉两河、君平街、三瓦窑) PM_(2.5)浓度时空演化规律进行实证研究。通过EEMD分解,获得了不同时间尺度上具有良好平稳性特征的固有模态函数(IMF)。大气PM_(2.5)演化的主要模态存在准4 h、准8 h和准24 h的平均周期,这些典型周期对应模态的累积贡献率基本上达到95%以上。研究表明,主要模态的准周期变化与各类型生产活动、交通排放紧密关联,这反映了大气系统中人为污染源的周期性输入作用。同时,研究发现,PM_(2.5)小时平均质量浓度波动函数服从幂律分布结构,具有标度不变性特征。进一步基于SOC理论探讨了大气PM_(2.5)浓度时空演化的内在动力规律,结合典型区域气象特征,阐明了冬季期间严重大气污染产生的宏观涌现机制。结果表明,EEMD方法所获得的不同IMF分量可以揭示大气PM_(2.5)时空演化的多尺度特征,但不同时间尺度上的IMF分量之间互不独立,各IMF分量的形成既受到准周期大气污染排放的作用,也受到大气系统非线性SOC动力机制的控制。 相似文献
5.
目前大气污染物对于地区经济以及人体健康的影响不容忽视。选取徐州市2016-01-01—2021-01-24大气污染物和气象要素数据,针对大气污染物浓度波动性强等特点,运用互补集成经验模态分解(CEEMD)将污染物数据分解为本征模态分量,提取出原始数据的各项特征,再对分解出的各本征模态分量构建双向门控循环单元模型(BiGRU),通过双向循环训练,学习各分量的特征趋势并获得最优训练参数,将输出结果重构,得到最终的预测值。结果表明:与BiGRU、BP模型相比,CEEMD-BiGRU模型预测各项大气污染物的平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)分别下降15%、20%和2百分点以上,预测精度有较大提升。在此基础上,利用CEEMD-BiGRU模型预测后一时间段残差,以修正原预测值,得到大气污染物预测区间上界,进一步扩展模型的适用性。 相似文献
6.
城市短期燃气负荷具有高随机性和复杂性特征,利用单一的模型难以做出准确预测。以某城市民用类燃气日负荷为研究对象,在分析该市两年多燃气日负荷特征的基础上,建立了基于BP神经网络(BPNN)-经验模态分解(EMD)-长短期记忆(LSTM)神经网络的组合预测模型,对该市短期燃气日负荷进行了预测。首先通过BPNN模型学习温度、日期属性影响下燃气负荷的主要特征,增长趋势等次要特征则体现在BPNN模型预测产生的残差中;然后采用EMD算法分解残差得到有限个本征模函数(IMF),并利用LSTM模型学习各IMF分量的短期时序规律,将各IMF分量的预测值相加得到残差预测值;最后将两部分预测值代数相加得到最终的预测结果。实证结果表明:与单一的LSTM模型和BPNN-LSTM模型相比,该组合预测模型半月步长的平均绝对误差为3.4%,预测精度更高,是一种更为有效的城市短期燃气负荷预测方法。 相似文献
7.
滑坡位移时间序列在外因的影响下呈现出单调非平稳的曲线特征,利用经验模态分解法(Empirical Mode Decomposition,EMD)将滑坡累计位移分解为周期项和趋势项,建立支持向量回归(Support Vector Regression,SVR)-布朗单一参数指数平滑(Browns Single Parameter Exponential Smoothing,Browns)模型对滑坡位移进行预测。以三峡库区木鱼包滑坡为例,首先在考虑降雨量和库水位等影响因子的基础上,采用SVR模型对周期项位移进行预测;然后采用Browns模型对趋势项位移进行预测;最后通过时间序列加法模型得到滑坡累计位移预测值,计算得到测试样本的平均绝对误差为13.31mm,均方根误差和判定系数分别为16.6mm和0.83。通过对比分析,结果表明:基于EMD与SVR-Browns模型的滑坡位移预测精度明显优于SVR模型和Browns模型,证明该模型是一种有效的滑坡位移预测方法。 相似文献
8.
针对PM10浓度时间序列具有明显的非线性和波动性特征,提出一种基于自适应噪声的完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-样本熵(sample entropy,SE)和长短期记忆神经网络(long short-term memory,LSTM)的组合预测模型。首先利用CEEMDAN-SE将原始PM10浓度时间序列分解为若干个复杂度差异明显的子序列;然后针对各子序列的内在特性结合气象因素分别建立适当参数空间的LSTM预测模型;最后将预测结果进行叠加得到最终预测结果。以唐山市4个空气质量监测站的实测PM10浓度数据进行模型验证分析,结果表明:所提预测模型对比其他几种预测模型显示出较高的预测精度,以及良好的普适性。 相似文献
9.
10.
为更好地掌握日均PM_(2.5)浓度的变化规律,提出了一种基于多模态支持向量回归(MSVR)的混合预测模型。利用集成经验模态分解将日均PM_(2.5)数据分解成不同频段的分量序列,以降低数据的非平稳性。然后根据每组分量自身特点构建不同的支持向量回归(SVR)模型,并通过相关分析确定各分量输入变量。最后,将各分量预测值进行叠加得到最终预测结果。以浙江省玉环市的PM_(2.5)浓度进行验证。结果表明:与单一SVR模型相比,MSVR模型具有更好的预测效果,精度评价指标MAE、MAPE和RMSE分别下降了26.98%、23.04%、34.08%,这为大气污染预控提供了有效的技术支持。 相似文献
11.
12.
13.
2016年3月31日,深圳市及其周边地区出现典型的区域性空气污染事件,多数地区的AQI超过了100.主要污染物浓度和气象要素的逐小时变化表明,该次污染天气主要是在不利气象条件下,由污染物区域传输和二次污染物生成共同导致的.进一步的后向轨迹分析表明,污染日抵达深圳市的气团可能从东莞、广州和佛山等地区携带了大量污染物,并且移动速度缓慢,造成了深圳较为严重的污染天气,而污染日前和污染日后抵达深圳市的气团有利于污染物的稀释扩散,因此空气质量较好. 相似文献
14.
为深入分析大气水汽对空气质量的影响,基于2016年成都温江国家气候观象台的气象观测资料和成都市环境监测中心的环境空气质量指数(AQI),首先利用地面气象要素估算出逐时的大气可降水量(PWV),继而结合空气质量指数资料研究了成都地区降水、静稳天气、太阳辐射强度等气象条件对空气质量及其与大气水汽关系的影响.结果表明:在降水条件下,臭氧(O_3)浓度随着PWV的增大而显著减小,PWV与PM_(2.5)、PM_(10)浓度的正相关系数减小,其中对PWV与PM_(10)浓度的相关性影响最大,相关系数减小47.62%.PWV与O_3的负相关系数在春季增大、夏季减小;PWV与PM_(2.5)的正相关系数在秋、冬季减小.当天气处于高静稳指数时,PWV变化对污染物浓度变化的影响更为显著.不同太阳辐射强度下,PWV与O_3的相关性也不同,随着太阳辐射增强,PWV与PM_(2.5)、PM_(10)的相关性从正相关转变为负相关. 相似文献
15.
16.
太原市秋冬季大气污染特征和输送路径及潜在源区分析 总被引:1,自引:4,他引:1
采用环境空气质量指数(AQI)统计分析了2014~2018年太原市全年及秋冬季污染特征,并采用HYSPLIT后向轨迹模型计算了2014~2017年秋冬季逐时后向轨迹,结合太原市AQI,通过聚类分析、潜在源贡献因子和浓度权重轨迹方法对影响太原市的污染物输送路径和潜在源区进行了分析.结果表明,太原市污染状况不容乐观,太原市2014~2018年全年优良天数波动较大,尤其近两年从64%下降到不足50%;然而秋冬季优良天数稳步上升,2018年超过50%,空气质量有好转趋势.污染类型可能发生变化,全年及秋冬季PM_(2.5)为首要污染物的污染天数下降显著,PM_(10)为首要污染物的天数上升明显.聚类分析2014~2017年秋冬季太原的后向轨迹,53%的气团来自偏西方向,21%来自西北方向,12%来自西南方向,14%来自偏东方向,其中西南方向轨迹是外来污染物输送进入太原的主要轨迹,对太原空气质量有显著影响.PSCF和CWT分析表明,影响太原空气质量的重要潜在源区主要位于汾渭平原的陕西汉中、西安和山西的吕梁、临汾等地.建立汾渭平原及其周边区域联防联控机制对控制区域污染有着重要意义. 相似文献
17.
为了解重庆市北碚区大气质量状况,利用其2014年气溶胶光学厚度和颗粒物质量浓度的同步观测结果进行分析.结果表明,北碚区AOD500 nm的年均值为1.46±0.69,其随月份变化明显,其中11月最高为2.90±1.85, 9月最低为0.54±0.05.北碚区存在颗粒物污染的现象,PM2.5和PM10的年均值分别为(62±40)μg·m-3和(94±51)μg·m-3,均超出GB 3095-2012《环境空气质量标准》二级标准限值,PM2.5与PM10的日均值超标率分别为26%和15%.细粒子PM2.5与可吸入颗粒物PM10浓度之间呈现显著性相关,全年决定系数R2能够达到0.95(P<0.01),AOD与PM2.5、 PM10之间全年均呈正相关特性,全年决定系数R2分别为0.48和0.46,且不同季节... 相似文献
18.
基于BP神经网络的污染物浓度多模式集成预报 总被引:1,自引:0,他引:1
基于中国气象局雾-霾数值预报系统CUACE、北京区域环境气象数值预报系统BREMPS和华东区域大气环境数值预报系统WRF-Chem三个环境气象模式预报产品,利用BP神经网络方法建立多模式集成预报模型.首先通过实验得到BP神经网络的训练函数、隐含层节点数和训练样本长度分别为贝叶斯归一化训练函数trainbr、10和50.随后选取北京、天津和石家庄站点的预报结果检验该模型的预报性能.结果表明:(1)相对于单模式,BP神经网络集成预报的3~72h逐3h污染物浓度和观测之间的归一化平均偏差从-100%~200%降低到-20%~20%,污染物浓度和观测的均方根误差比各单模式降低15%以上,相关系数从0.1~0.8提升到0.3~0.85之间,说明其预报结果优于各单模式.(2)2016年AQI等级评估表明,集成模型预报的北京轻度和中度污染的TS评分分别比CUACE提高22%和10%,在天津重度污染的空报率和漏报率分别降低31%和25%.(3)2016年12月份的重污染过程评估发现,集成模型预报的PM2.5浓度的演变趋势和实况基本相符. 相似文献
19.
区域气象条件和减排与空气质量的变化关系密切.区域污染天气的发生不只受人为排放的影响,其与气象条件也密切有关.我国地处全球的主要季风气候区,大气环流具有明显的季风气候变化特征,区域气象条件受年际气候变化影响显著.研究通过分析不同气候条件下京津冀地区、成渝地区、长三角和珠三角城市群2001~2018年主要气象要素及其污染天... 相似文献