首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Some species have insufficient defenses against climate change, emerging infectious diseases, and non‐native species because they have not been exposed to these factors over their evolutionary history, and this can decrease their likelihood of persistence. Captive breeding programs are sometimes used to reintroduce individuals back into the wild; however, successful captive breeding and reintroduction can be difficult because species or populations often cannot coexist with non‐native pathogens and herbivores without artificial selection. In captive breeding programs, breeders can select for host defenses that prevent or reduce pathogen or herbivore burden (i.e., resistance) or traits that limit the effects of parasitism or herbivory on host fitness (i.e., tolerance). We propose that selection for host tolerance may enhance the success of reintroduction or translocation because tolerant hosts generally have neutral effects on introduced pathogens and herbivores. The release of resistant hosts would have detrimental effects on their natural enemies, promoting rapid evolution to circumvent the host resistance that may reduce the long‐term probability of persistence of the reintroduced or translocated species. We examined 2 case studies, one on the pathogenic amphibian chytrid fungus ( Batrachochytrium dendrobatidis [Bd]) and the other on the herbivorous cactus moth ( Cactoblastis cactorum) in the United States, where it is not native. In each case study, we provide recommendations for how captive breeders and managers could go about selecting for host tolerance. Selecting for tolerance may offer a promising tool to rescue hosts species from invasive natural enemies as well as new natural enemies associated with climate change‐induced range shifts.  相似文献   

2.
Kniskern JM  Rausher MD 《Ecology》2006,87(3):675-685
Variation in the environment is common within and between natural populations and may influence selection on plant resistance by altering the level of damage or the fitness consequences of damage from plant enemies. While much is known about how environmental variation influences the amount of damage a plant experiences, few studies have attempted to determine how variation in the environment may alter the fitness consequences of damage, particularly in plant-pathogen interactions. In this work we manipulated a rust pathogen, Coleosporium ipomoeae, in field experiments and showed that this pathogen reduced several components of fitness in its natural host plant, Ipomoea purpurea. Furthermore, we showed that the deleterious effects of C. ipomoeae were variable. We identified variation in the quality of a plant's microenvironment, the abundance of secondary enemy damage, and the length of a growing season as variable components of the environment that may influence the magnitude of damage and tolerance, causing the interaction between C. ipomoeae and I. purpurea to vary from parasitism to commensalism. Considering how environmental variation impacts the magnitude and negative fitness effects of pathogen damage is important to understanding spatially variable selection and coevolution in this and other plant-pathogen interactions.  相似文献   

3.
Nonindigenous invasive plants pose a major threat to natural communities worldwide. Biological control of weeds via selected introduction of their natural enemies can affect control over large spatial areas but also risk nontarget effects. To maximize effectiveness while minimizing risk, weed biocontrol programs should introduce the minimum number of host-specific natural enemies necessary to control an invasive nonindigenous plant. We used elasticity analysis of a matrix model to help inform biocontrol agent selection for garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande). The Eurasian biennial A. petiolata is considered one of the most problematic invaders of temperate forests in North America. Four weevil species in the genus Ceutorhynchus (Coleoptera: Curculionidae) are currently considered potential biocontrol agents. These species attack rosettes (C. scrobicollis), stems (C. roberti, C. alliariae), and seeds (C. constrictus) of A. petiolata. Elasticity analyses using A. petiolata demographic parameters from North America indicated that changes in the rosette-to-flowering-plant transition and changes in fecundity consistently had the greatest impact on population growth rate. These results suggest that attack by the rosette-feeder C. scrobicollis, which reduces overwintering survival, and seed or stem feeders that reduce seed output should be particularly effective. Model outcomes differed greatly as A. petiolata demographic parameters were varied within ranges observed in North America, indicating that successful control of A. petiolata populations may occur under some, but not all, conditions. Using these a priori analyses we predict: (1) rosette mortality and reduction of seed output will be the most important factors determining A. petiolata demography; (2) the root-crown feeder C. scrobicollis will have the most significant impact on A. petiolata demography; (3) releases of single control agents are unlikely to control A. petiolata across its full range of demographic variability; (4) combinations of agents that simultaneously reduce rosette survival and seed production will be required to suppress the most vigorous A. petiolata populations. These predictions can be tested using established long-term monitoring sites coupled with a designed release program. If demographic models can successfully predict biocontrol agent impact on invasive plant populations, a continued dialogue and collaboration between empirical and theoretical approaches may be the key to the development of successful biocontrol tactics for plant invaders in the future.  相似文献   

4.
One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of generalist herbivores in natural communities their potential to control invasive species is poorly understood. We carried out parallel laboratory feeding bioassays with generalist invertebrate herbivores from the native (Europe) and from the introduced (North America) range using native and nonnative tetraploid populations of the invasive spotted knapweed, Centaurea stoebe. We found that the growth of North American generalist herbivores was far lower when feeding on C. stoebe than the growth of European generalists. In contrast, North American and European generalists grew equally well on European and North American tetraploid C. stoebe plants, lending no support for an evolutionary change in resistance of North American tetraploid C. stoebe populations against generalist herbivores. These results suggest that biogeographical differences in the response of generalist herbivores to novel plant species have the potential to affect plant invasions.  相似文献   

5.
Parker IM  Gilbert GS 《Ecology》2007,88(5):1210-1224
An important question in the study of biological invasions is the degree to which successful invasion can be explained by release from control by natural enemies. Natural enemies dominate explanations of two alternate phenomena: that most introduced plants fail to establish viable populations (biotic resistance hypothesis) and that some introduced plants become noxious invaders (natural enemies hypothesis). We used a suite of 18 phylogenetically related native and nonnative clovers (Trifolium and Medicago) and the foliar pathogens and invertebrate herbivores that attack them to answer two questions. Do native species suffer greater attack by natural enemies relative to introduced species at the same site? Are some introduced species excluded from native plant communities because they are susceptible to local natural enemies? We address these questions using three lines of evidence: (1) the frequency of attack and composition of fungal pathogens and herbivores for each clover species in four years of common garden experiments, as well as susceptibility to inoculation with a common pathogen; (2) the degree of leaf damage suffered by each species in common garden experiments; and (3) fitness effects estimated using correlative approaches and pathogen removal experiments. Introduced species showed no evidence of escape from pathogens, being equivalent to native species as a group in terms of infection levels, susceptibility, disease prevalence, disease severity (with more severe damage on introduced species in one year), the influence of disease on mortality, and the effect of fungicide treatment on mortality and biomass. In contrast, invertebrate herbivores caused more damage on native species in two years, although the influence of herbivore attack on mortality did not differ between native and introduced species. Within introduced species, the predictions of the biotic resistance hypothesis were not supported: the most invasive species showed greater infection, greater prevalence and severity of disease, greater prevalence of herbivory, and greater effects of fungicide on biomass and were indistinguishable from noninvasive introduced species in all other respects. Therefore, although herbivores preferred native over introduced species, escape from pest pressure cannot be used to explain why some introduced clovers are common invaders in coastal prairie while others are not.  相似文献   

6.
Zovi D  Stastny M  Battisti A  Larsson S 《Ecology》2008,89(5):1388-1398
Herbivore populations may become adapted to the defenses of their local hosts, but the traits that maximize host exploitation may also carry ecological costs. We investigated the patterns and costs of local adaptation in the pine processionary moth, Thaumetopoea pityocampa, to its host plants, Pinus nigra and P. sylvestris. The two hosts differ in needle toughness, a major feeding impediment for leaf-eating insects. We observed a west-to-east gradient of increasing progeny size in the Italian Alps, matching the pattern in toughness of their respective local host plant. Eastern populations that feed on the native P. nigra with tough needles had larger eggs, and neonate larvae with larger head capsules, than western populations that feed on the native P. sylvestris and the introduced P. nigra with softer foliage. In a reciprocal transfer experiment that involved the eastern-most and the western-most populations of T. pityocampa from this region, and excluded natural enemies, we found evidence for local adaptation to the host plant. Specifically, larvae from the western population only performed well when raised on their local hosts with soft needles, and they suffered near-complete mortality on the tough foliage at the eastern site. In contrast, larvae from the eastern population survived equally well at both sites. Local adaptation involved a trade-off between progeny size and the number of offspring. We hypothesized that an additional cost, imposed by natural enemies, may be associated with increased egg size: we also observed a west-to-east gradient of increased egg parasitism. We tested this hypothesis in a common garden by exposing eggs of both populations to parasitism by two native egg parasitoids, Ooencyrtus pityocampae and Baryscapus servadeii. The eastern population suffered a higher level of parasitoid attack by O. pityocampae than the western population, and performance of hatched adults of both parasitoids was enhanced in large eggs. Thus, increased neonate quality (larger eggs yielding larger larvae) confers an advantage on tough foliage but incurs the ecological cost of increased parasitism, which may constrain further adaptation by this herbivore.  相似文献   

7.
Blumenthal DM  Hufbauer RA 《Ecology》2007,88(11):2758-2765
The "evolution of increased competitive ability" (EICA) hypothesis predicts that exotic species will adapt to reduced herbivore pressure by losing costly defenses in favor of competitive ability. Previous studies often support the prediction that plants from exotic populations will be less well defended than plants from native populations. However, results are mixed with respect to the question of whether plants from exotic populations have become more competitive. In a common-garden experiment involving plants from two native and two exotic populations of 14 different invasive species, we tested whether exotic plants generally grow larger than conspecific native plants, and whether patterns of relative growth depend on the intensity of competition. We found a quite consistent pattern of larger exotic than native plants, but only in the absence of competition. These results suggest that invasive species may often evolve increased growth, and that increased growth may facilitate adaptation to noncompetitive environments.  相似文献   

8.
Fitness Decline under Relaxed Selection in Captive Populations   总被引:2,自引:0,他引:2  
Abstract: We compared life-history schedules among populations of the housefly (  Musca domestica L.) maintained in the laboratory under curtailed life span, such that selection on mutations that affected only late-life fitness traits was reduced. As a result of this regime, late-life ( but not early-life) fecundity declined within a few generations. The results suggest that if captive populations are maintained with minimal selection, either by direct manipulation of the environment or by equalizing family contributions, the increased frequency of potentially deleterious mutations may rapidly lower the ability of these populations to exist under natural conditions. This would be independent of population size, so expanding captive populations would not alleviate potential fitness reductions due to relaxed selection.  相似文献   

9.
Lethal chemical defenses in prey species can have profound effects on interactions with predators. The presence of lethal defenses in prey can correct the selective imbalance suggested by the life-dinner principle in which the fitness consequences of an encounter between predator and prey should be much greater for the prey species than the predator. Despite the apparent adaptive advantages of lethality the evolution of deadly prey presents a fundamental dilemma. How might lethal defenses confer an individual fitness advantage if both predators and prey die during interactions? We examined the interaction between the rough-skinned newt (Taricha granulosa), which contains a powerful neurotoxin called tetrodotoxin (TTX), and the common garter snake (Thamnophis sirtalis). In some sympatric populations, Th. sirtalis have evolved physiological resistance to TTX. Whether the newts’ toxin confers protection from snake predators or has been disarmed by the snakes’ physiological resistance has not yet been directly tested. In predator–prey trials, newts that were rejected by snakes had greater concentrations of TTX in their skin (4.52 ± 3.49 mg TTX/g skin) than those that were eaten (1.72 ± 1.53 mg TTX/g skin). Despite the plethora of taxa that appear to use TTX defensively, this is the first direct and quantitative demonstration of the antipredator efficacy of TTX. Because the survival probability of a newt (and thus fitness) is affected by individual TTX concentration, selection can drive the escalation of toxin levels in newts. The variable fitness consequences associated with both TTX levels of newts and resistance to TTX in snakes that may promote a strong and symmetrical coevolutionary relationship have now been demonstrated.  相似文献   

10.
Lau JA 《Ecology》2008,89(4):1023-1031
Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.  相似文献   

11.
Bize P  Devevey G  Monaghan P  Doligez B  Christe P 《Ecology》2008,89(9):2584-2593
Major life history traits, such as fecundity and survival, have been consistently demonstrated to covary positively in nature, some individuals having more resources than others to allocate to all aspects of their life history. Yet, little is known about which resources (or state variables) may account for such covariation. Reactive oxygen species (ROS) are natural by-products of metabolism and, when ROS production exceeds antioxidant defenses, organisms are exposed to oxidative stress that can have deleterious effects on their fecundity and survival. Using a wild, long-lived bird, the Alpine Swift (Apus melba), we examined whether individual red cell resistance to oxidative stress covaried with fecundity and survival. We found that males that survived to the next breeding season tended to be more resistant to oxidative stress, and females with higher resistance to oxidative stress laid larger clutches. Furthermore, the eggs of females with low resistance to oxidative stress were less likely to hatch than those of females with high resistance to oxidative stress. By swapping entire clutches at clutch completion, we then demonstrated that hatching failure was related to the production of low-quality eggs by females with low resistance to oxidative stress, rather than to inadequate parental care during incubation. Although male and female resistance to oxidative stress covaried with age, the relationships among oxidative stress, survival, and fecundity occurred independently of chronological age. Overall, our study suggests that oxidative stress may play a significant role in shaping fecundity and survival in the wild. It further suggests that the nature of the covariation between resistance to oxidative stress and life history traits is sex specific, high resistance to oxidative stress covarying primarily with fecundity in females and with survival in males.  相似文献   

12.
Straub CS  Snyder WE 《Ecology》2008,89(6):1605-1615
Concern over biodiversity loss, especially at higher trophic levels, has led to a surge in studies investigating how changes in natural enemy diversity affect community and ecosystem functioning. These studies have found that increasing enemy diversity can strengthen, weaken, and not affect prey suppression, demonstrating that multi-enemy effects on prey are context-dependent. Here we ask how one factor, plant species identity, influences multi-enemy effects on prey. We focused on two plant species of agricultural importance, potato (Solanum tuberosum), and collards (Brassica oleracea L.). These species share a common herbivorous pest, the green peach aphid (Myzus persicae), but vary in structural and chemical traits that affect aphid reproductive rates and which may also influence inter-enemy interactions. In a large-scale field experiment, overall prey exploitation varied dramatically among the plant species, with enemies reducing aphid populations by approximately 94% on potatoes and approximately 62% on collards. Increasing enemy diversity similarly strengthened aphid suppression on both plants, however, and there was no evidence that plant species identity significantly altered the relationship between enemy diversity and prey suppression. Microcosm experiments suggested that, on both collards and potatoes, intraspecific competition among natural enemies exceeded interspecific competition. Enemy species showed consistent and significant differences in where they foraged on the plants, and enemies in the low-diversity treatment tended to spend less time foraging than enemies in the high-diversity treatment. These data suggest that increasing enemy diversity may strengthen aphid suppression because interspecific differences in where enemies forage on the plant allow for greater resource partitioning. Further, these functional benefits of diversity appear to be robust to changes in plant species identity.  相似文献   

13.
Beckman NG  Muller-Landau HC 《Ecology》2011,92(11):2131-2140
The importance of vertebrates, invertebrates, and pathogens for plant communities has long been recognized, but their absolute and relative importance in early recruitment of multiple coexisting tropical plant species has not been quantified. Further, little is known about the relationship of fruit traits to seed mortality due to natural enemies in tropical plants. To investigate the influences of vertebrates, invertebrates, and pathogens on reproduction of seven canopy plant species varying in fruit traits, we quantified reductions in fruit development and seed germination due to vertebrates, invertebrates, and fungal pathogens through experimental removal of these enemies using canopy exclosures, insecticide, and fungicide, respectively. We also measured morphological fruit traits hypothesized to mediate interactions of plants with natural enemies of seeds. Vertebrates, invertebrates, and fungi differentially affected predispersal seed mortality depending on the plant species. Fruit morphology explained some variation among species; species with larger fruit and less physical protection surrounding seeds exhibited greater negative effects of fungi on fruit development and germination and experienced reduced seed survival integrated over fruit development and germination in response to vertebrates. Within species, variation in seed size also contributed to variation in natural enemy effects on seed viability. Further, seedling growth was higher for seeds that developed in vertebrate exclosures for Anacardium excelsum and under the fungicide treatment for Castilla elastica, suggesting that predispersal effects of natural enemies may carry through to the seedling stage. This is the first experimental test of the relative effects of vertebrates, invertebrates, and pathogens on seed survival in the canopy. This study motivates further investigation to determine the generality of our results for plant communities. If there is strong variation in natural enemy attack among species related to differences in fruit morphology, then quantification of fruit traits will aid in predicting the outcomes of interactions between plants and their natural enemies. This is particularly important in tropical forests, where high species diversity makes it logistically impossible to study every plant life history stage of every species.  相似文献   

14.
Stricker KB  Stiling P 《Ecology》2012,93(8):1902-1911
The enemy release hypothesis (ERH) is often cited to explain why some plants successfully invade natural communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their native range but are relieved of this pressure where their enemies have not been co-introduced. Some studies have shown that invasive plants sustain lower levels of herbivore damage when compared to native species, but how damage affects fitness and population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida (USA) to experimentally test the ERH, addressing deficiencies in our understanding of the role of natural enemies in plant invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the ERH, indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion of E. uniflora leaves than those of its native congeners. This interaction is particularly interesting because M. undatus and E. uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore. Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to accumulate and new communities assemble worldwide.  相似文献   

15.
Artificial propagation strategies often incur selection in captivity that leads to traits that are maladaptive in the wild. For propagation programs focused on production rather than demographic contribution to wild populations, effects on wild populations can occur through unintentional escapement or the need to release individuals into natural environments for part of their life cycle. In this case, 2 alternative management strategies might reduce unintended fitness consequences on natural populations: (1) reduce selection in captivity as much as possible to reduce fitness load (keep them similar), or (2) breed a separate population to reduce captive‐wild interactions as much as possible (make them different). We quantitatively evaluate these 2 strategies with a coupled demographic–genetic model based on Pacific salmon hatcheries that incorporates a variety of relevant processes and dynamics: selection in the hatchery relative to the wild, assortative mating based on the trait under selection, and different life cycle arrangements in terms of hatchery release, density dependence, natural selection, and reproduction. Model results indicate that, if natural selection only occurs between reproduction and captive release, the similar strategy performs better. However, if natural selection occurs between captive release and reproduction, the different and similar strategies present viable alternatives to reducing unintended fitness consequences because of the greater opportunity to purge maladaptive individuals. In this case, the appropriate approach depends on the feasibility of each strategy and the demographic goal (e.g., increasing natural abundance, or ensuring that a high proportion of natural spawners are naturally produced). In addition, the fitness effects of hatchery release are much greater if hatchery release occurs before (vs. after) density‐dependent interactions. Given the logistical challenges to achieving both the similar and different strategies, evaluation of not just the preferred strategy but also the consequences of failing to achieve the desired target is critical. Evaluación de Estrategias Alternativas para Minimizar las Consecuencias No Inesperadas en la Adecuación de Individuos Criados en Cautiverio sobre Poblaciones Silvestres  相似文献   

16.
Crop pest and disease incidences at plot scale vary as a result of landscape effects. Two main effects can be distinguished. First, landscape context provides habitats of variable quality for pests, pathogens, and beneficial and vector organisms. Second, the movements of these organisms are dependent on the connectivity status of the landscape. Most of the studies focus on indirect effects of landscape context on pest abundance through their predators and parasitoids, and only a few on direct effects on pests and pathogens. Here we studied three coffee pests and pathogens, with limited or no pressure from host-specific natural enemies, and with widely varying life histories, to test their relationships with landscape context: a fungus, Hemileia vastatrix, causal agent of coffee leaf rust; an insect, the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae); and root-knot nematodes, Meloidogyne spp. Their incidence was assessed in 29 coffee plots from Turrialba, Costa Rica. In addition, we characterized the landscape context around these coffee plots in 12 nested circular sectors ranging from 50 to 1500 m in radius. We then performed correlation analysis between proportions of different land uses at different scales and coffee pest and disease incidences. We obtained significant positive correlations, peaking at the 150 m radius, between coffee berry borer abundance and proportion of coffee in the landscape. We also found significant positive correlations between coffee leaf rust incidence and proportion of pasture, peaking at the 200 m radius. Even after accounting for plot level predictors of coffee leaf rust and coffee berry borer through covariance analysis, the significance of landscape structure was maintained. We hypothesized that connected coffee plots favored coffee berry borer movements and improved its survival. We also hypothesized that wind turbulence, produced by low-wind-resistance land uses such as pasture, favored removal of coffee leaf rust spore clusters from host surfaces, resulting in increased epidemics. In contrast, root-knot nematode population density was not correlated to landscape context, possibly because nematodes are almost immobile in the soil. We propose fragmenting coffee plots with forest corridors to control coffee berry borer movements between coffee plots without favoring coffee leaf rust dispersal.  相似文献   

17.
The geographic mosaic theory of coevolution states that variation in species interactions forms the raw material for coevolutionary processes, which take place over large geographic scales. One key assumption underlying the process of coevolution in plant-herbivore interactions is that herbivores exert selection on their host plants and that this selection varies among plant populations. We examined spatial variation in the existence and strength of phenotypic selection on host plant resistance exerted by specialist herbivores in 17 archipelago populations of the perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). In these highly fragmented populations, V. hirundinaria is consumed by the larvae of two specialist herbivores: the folivorous moth Abrostola asclepiadis and the seed predator Euphranta connexa. Selection imposed on host plants by these herbivores was examined by analyzing the associations between levels of herbivory, plant fitness, and contents of a number of leaf chemicals reflecting plant resistance to and quality for the herbivores. We found extensive spatial variation in the levels of herbivory and in plant fitness. More importantly, the impact of both leaf herbivory and seed predation on plant fitness varied among plant populations, indicating spatial variation in phenotypic selection. In addition, leaf chemistry varied widely among plant populations, reflecting spatial variation in plant quality as food for the herbivores. However, leaf compounds influenced folivory similarly in all the studied plant populations, and interestingly, some of the compounds were associated with the intensity of seed predation. Finally, some of the leaf compounds were associated with plant fitness, and the strength and direction of these associations varied among plant populations. The observed spatial variation in the strength of the interactions between V. hirundinaria and its specialist herbivores suggests a geographic selection mosaic. Because the occurrence and strength of spatial variation varied between the two specialist herbivores, our results highlight the importance of considering multiple enemies when trying to understand evolution of interactions between plants and their herbivores.  相似文献   

18.
Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long‐term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry‐over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white‐nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free‐ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry‐over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations.  相似文献   

19.
Fornara DA  Du Toit JT 《Ecology》2007,88(1):200-209
We measured browsing-induced responses of Acacia trees to investigate "browsing lawns" as an analogy to grazing lawns in a semiarid eutrophic African savanna. During the two-year field study, we measured plant tolerance, resistance, and phenological traits, while comparing variation in leaf nitrogen and specific leaf area (SLA) across stands of Acacia nigrescens, Miller, that had experienced markedly different histories of attack from large herbivores. Trees in heavily browsed stands developed (1) tolerance traits such as high regrowth abilities in shoots and leaves, high annual branch growth rates, extensive tree branching and evidence of internal N translocation, and (2) resistance traits such as close thorn spacing. However, phenological "escape" responses were weak even in heavily browsed stands. Overall, browsing strongly affected plant morpho-functional traits and decreased both the number of trees carrying pods and the number of pods per tree in heavily browsed stands. Hence, there is experimental evidence that tolerance and resistance traits may occur simultaneously at heavily browsed sites, but this comes at the expense of reproductive success. Such tolerance and resistance traits may coexist if browsers trigger and maintain a positive feedback loop in which trees are continually investing in regrowth (tolerance), and if the plant's physical defenses (resistance) are not nutritionally costly and are long-lived. Our results confirm that chronic browsing by ungulates can maintain A. nigrescens trees in a hedged state that is analogous to a grazing lawn. Further research is needed to fully understand the long-term effects of chronic browsing on reproduction within such tree populations, as well as the overall effects on nutrient cycling at the ecosystem level.  相似文献   

20.
Alba C  Bowers MD  Hufbauer R 《Ecology》2012,93(8):1912-1921
Optimal defense theory posits that plants with limited resources deploy chemical defenses based on the fitness value of different tissues and their probability of attack. However, what constitutes optimal defense depends on the identity of the herbivores involved in the interaction. Generalists, which are not tightly coevolved with their many host plants, are typically deterred by chemical defenses, while coevolved specialists are often attracted to these same chemicals. This imposes an "evolutionary dilemma" in which generalists and specialists exert opposing selection on plant investment in defense, thereby stabilizing defenses at intermediate levels. We used the natural shift in herbivore community composition that typifies many plant invasions to test a novel, combined prediction of optimal defense theory and the evolutionary dilemma model: that the within-plant distribution of defenses reflects both the value of different tissues (i.e., young vs. old leaves) and the relative importance of specialist and generalist herbivores in the community. Using populations of Verbascum thapsus exposed to ambient herbivory in its native range (where specialist and generalist chewing herbivores are prevalent) and its introduced range (where only generalist chewing herbivores are prevalent), we illustrate significant differences in the way iridoid glycosides are distributed among young and old leaves. Importantly, high-quality young leaves are 6.5x more highly defended than old leaves in the introduced range, but only 2x more highly defended in the native range. Additionally, defense levels are tracked by patterns of chewing damage, with damage restricted mostly to low-quality old leaves in the introduced range, but not the native range. Given that whole-plant investment in defense does not differ between ranges, introduced mullein may achieve increased fitness simply by optimizing its within-plant distribution of defense in the absence of certain specialist herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号