首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
为了研究郑州市PM_(2.5)中部分金属元素在采暖期与非采暖期的来源、污染特征并进行相应的生态风险及健康风险评价,于2016年春季非采暖期和冬季采暖期在河南郑州设置采样点,采集有效膜样本105个.测定PM_(2.5)质量浓度及其中Zn、Pb、Cu、As、Cd、Co、Mn、Fe共8种金属元素含量,郑州2016年非采暖期PM_(2.5)质量浓度日均值为113.41μg·m~(-3)、采暖期为216.99μg·m~(-3),采暖期中Cu、Zn、As、Cd这4种元素的浓度分别是非采暖期的2.3、2.0、1.9、1.5倍,季节性差异明显.富集因子分析显示郑州地区Cd元素富集程度最高已超过1000,受人为影响严重.PMF源解析表明燃煤源及机动车源是郑州采暖期重金属主要来源,贡献率为48.00%和34.95%;扬尘源及交通污染源在非采暖期的贡献率为55.92%和31.08%.健康风险评价显示3种致癌元素As、Cd、Co的致癌风险值均小于10~(-4),Mn的非致癌风险值最高为0.9,可能存在一定的非致癌风险.  相似文献   

2.
焦炉排放多环芳烃与人体健康风险评价研究   总被引:5,自引:2,他引:3  
伯鑫  王刚  温柔  赵春丽  吴铁  李时蓓 《环境科学》2014,35(7):2742-2747
焦炉炼焦产生多环芳烃物质(PAHs)具有较强毒性和致癌作用,本研究以某大型钢铁企业焦炉为例,采用AERMOD扩散模式来预测分析焦炉排放PAHs共13种污染物在大气中迁移扩散情况,采用BREEZE Risk Analyst根据人体健康风险评价导则HHRAP计算评价范围内受体人群PAHs污染物致癌和危害指数,对焦炉排放PAHs的健康风险进行了定量评价.结果表明,应重点关注焦炉排放萘危害指数值影响(最大值为0.97).焦炉排放各污染物单因子致癌风险均小于1.0E-06,而综合考虑多环芳烃总致癌风险值最大达到2.65E-06,对当地居民的人体健康可能存在一定的影响.  相似文献   

3.
为实现土壤PAHs (多环芳烃)来源致癌风险的定量化,选取太原市城乡土壤为研究对象,分析PAHs污染水平并建立含量成分谱,利用PMF (正定矩阵因子分解)模型识别污染源,采用蒙特卡罗模拟进行健康风险评估,并联合PMF模型和健康风险模型量化PAHs污染源的健康风险,比较不同污染源对土壤PAHs含量和对致癌风险贡献的差异. 结果表明:①太原市土壤PAHs污染严重,城市地区人群暴露于土壤PAHs的致癌风险超过了可接受风险水平(10?6),农村地区人群超过可接受阈值的概率在10%~50%之间. ②城市土壤中PAHs主要来自燃煤交通混合源(41.5%)、燃煤源(26.0%)、石油源(16.2%)、焦炉排放源(8.2%)和交通排放源(8.1%),农村土壤PAHs主要来自燃煤源(43.3%)、生物质燃烧源(22.3%)、交通排放源(22.7%)和焦炉排放源(11.7%). ③燃煤交通混合源是城市地区致癌风险的最大来源,贡献率为53.7%;交通排放源和燃煤源是农村地区致癌风险的主要来源,贡献率分别为46.3%和45.6%. ④不同污染源对PAHs含量的贡献与其对致癌风险的贡献存在差异,对于城市地区,燃煤交通混合源、交通排放源对PAHs含量的贡献率分别为41.5%、8.1%,而其对致癌风险的贡献率分别为53.7%、13.0%;对于农村地区,交通排放源对PAHs含量的贡献率为22.7%,但其对致癌风险的贡献率为46.3%. 研究显示,规避交通排放源是降低PAHs致癌风险的关键,建议将基于健康风险的定量源解析技术应用到土壤风险管控中,以期更为有效地降低健康风险,保护人体健康.   相似文献   

4.
《环境科学与技术》2021,44(5):171-178
该文用玻璃纤维滤膜采集2019年乌鲁木齐市不同功能区采暖期和非采暖期的PM_(2.5)样品,经电感耦合等离子体发射光谱仪、冷原子荧光分光度仪对8种元素进行测定,运用地累积指数法和PMF模型进行元素来源分析,并对元素的人体健康风险进行评价。结果表明,乌鲁木齐市非采暖期PM_(2.5)中各元素浓度水平为FeZnAsCuPbMnNiHg,采暖期整体表现为FeZnCu≈AsMnPbNiHg,且呈采暖期高于非采暖期特点。Igeo结果表明,乌鲁木齐市大气PM_(2.5)中Fe、As、Cu、Hg、Pb为极重污染,Zn为重度污染,Ni为中-重污染,Mn为无污染。PMF源解析结果表明,乌鲁木齐市大气PM_(2.5)中元素来源主要是机动车尾气排放、工业冶金和燃煤,其次燃油排放及燃煤排放产生的二次污染也是重要的来源。健康风险模型评估结果显示,乌鲁木齐市大气PM_(2.5)中非致癌元素均不存在非致癌风险。致癌元素As存在对人体致癌的风险。  相似文献   

5.
兰州市大气PM10中重金属和多环芳烃的健康风险评价   总被引:5,自引:0,他引:5  
以现场采样监测和问卷调查方式,结合美国环保局推荐的健康风险评价模型,对兰州市大气PM10中重金属、PAHs及其健康风险进行了研究.结果表明:兰州市大气PM10中重金属和PAHs具有明显的季节特征,冬季高于夏季;人群对重金属和PAHs的日均暴露剂量在9.60×10-5~1.06×10-3 mg·kg-1·d-1之间,儿童的日均暴露剂量高于成人,男性高于女性;Zn和4环及4环以上的PAHs对总暴露剂量的贡献率较高.无论致癌风险还是非致癌风险,研究区均高于对照区,男性高于女性,其中,男性儿童致癌风险最高,预期寿命损失为2.17 d.冬季研究区和对照区的致癌风险均高于美国EPA推荐的可接受风险水平.  相似文献   

6.
王娟  郭观林  秦宁  侯荣  杨敏  康艺瑾  段小丽 《环境科学》2019,40(10):4345-4354
为研究大气颗粒物中多环芳烃(PAHs)的粒径分布与富集特征,确定不同粒径颗粒物中PAHs在人体呼吸系统各器官内的沉积浓度,以准确评估其人体呼吸暴露风险,选择东北某钢铁工业城市,在采暖期和非采暖期按粒径对大气颗粒物进行分级采样,用高效液相色谱对样品中14种优控PAHs进行分析,并将大气颗粒物粒径分级采样技术与人体呼吸系统内部沉积模型结合进行呼吸暴露评估.结果表明,大气颗粒物中总PAHs浓度变化显著,采暖期(743. 9 ng·m~(-3))高于非采暖期(169. 0ng·m~(-3)),多数PAHs(86. 3%~89. 9%)与大气中粒径≤2. 06μm的细颗粒有关;中低分子量PAHs单体呈双峰型,峰值位于1. 07~2. 06μm和7. 04~9. 99μm.高分子量PAHs呈单峰分布,峰值位于1. 07~2. 06μm; 4环PAHs的含量占主导优势,为总PAHs浓度的40%;在采暖期和非采暖期分别有53. 3%和55. 3%的颗粒态PAHs沉积在人体呼吸系统的不同器官,分别采用人体呼吸系统沉积浓度和在颗粒物上的总浓度计算该地区人群颗粒态PAHs的终身致癌超额风险值(incremental lifetime cancer risk,R值),成人的R值在采暖期为1. 3×10-5和2. 9×10-5,非采暖期为3. 1×10-6和6. 0×10-6,儿童的R值在采暖期为1. 0×10-5和2. 3×10-5,非采暖期为2. 4×10-6和4. 8×10-6.结果表明,颗粒物粒径分布直接影响呼吸系统沉积浓度和致癌风险,将分级采样技术与呼吸系统沉降模型结合方法可有效避免对人体呼吸暴露量的过度评估.  相似文献   

7.
采集2015年南昌市冬季大气PM_(2.5)样品,利用电感耦合等离子体质谱仪(ICP-MS)测定样品中重金属(V、Mn、Cr、Co、Ni、Cu、Zn、Cd、Ba和Pb)的含量,分析重金属的分布特征和来源,并对重金属健康风险进行评价。结果表明:采样期间PM2.5浓度总平均值为(29.74±16.82)μg/m~3,其中省外办最高,武术学校最低;各重金属元素总体平均浓度从高到低次序为:ZnPbCuMnBaNiVCrCdCo。因子分析结果表明:PM_(2.5)中重金属元素的来源包括道路交通尘和冶金化工排放、机动车尾气以及混合源。健康风险评价结果显示:PM_(2.5)中Mn对人体健康存在非致癌风险,其他元素(Cr、Ba、Co、Pb、Cd、Cu、V、Zn、Ni)基本没有非致癌风险;Cr对人体有较明显的致癌风险,Cd、Ni和Co对部分年龄段的人群(尤其是成年人)存在一定的致癌风险。  相似文献   

8.
为研究聊城市冬季PM_(2. 5)中多环芳烃(PAHs)的浓度水平、来源及健康效应,于2017年1~2月对聊城市PM_(2. 5)中的14种PAHs进行分析,利用特征比值法和PCA-MLR模型对其来源及贡献率进行解析,并利用Ba P当量浓度(Ba Peq)和呼吸途径暴露PAHs引发癌症的风险(ILCR)模型进行健康风险评估.结果表明,聊城市冬季PM_(2. 5)中PAHs的平均质量浓度为(64. 89±48. 23) ng·m~(-3),其中Fla、Pyr和Chry的浓度最高,占比分别为15. 5%、12. 8%和12. 7%,且4环PAHs总质量浓度占比最高,春节前与烟火Ⅱ期比其他时期污染较重. PCA-MLR模型分析结果表明,聊城市冬季PM_(2. 5)中PAHs来源主要包括煤炭燃烧、生物质燃烧和机动车尾气.聊城市冬季TEQ平均值为(6. 37±4. 92) ng·m~(-3),ILCR模型评估结果表明,成人的ILCR值高于儿童,二者的ILCR值均处于风险阈值内(10-6~10-4),表明聊城市冬季PM_(2. 5)具有潜在致癌风险.  相似文献   

9.
西安市地表灰尘中PAHs健康风险特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为揭示人群暴露地表灰尘中PAHs的健康风险,在西安市采集58个地表灰尘样品,分析其中16种优控PAHs质量分数,并根据美国能源部风险评估信息系统中的暴露方法对其健康风险进行评价.结果表明:西安市地表灰尘中w(∑16PAHs)(16种PAHs总量)范围为5.04~47.74 mg/kg,平均值为13.85 mg/kg.人群暴露地表灰尘中PAHs的主要途径是经口摄入,并且不同途径下儿童的暴露剂量均高于成人.地表灰尘中PAHs对人群没有明显的非致癌健康危害,但对儿童的非致癌危害高于成人,其中Nap、Phe、Fla、Pyr和BghiP对人群的非致癌风险明显高于Acy、Ace、Flu和Ant.7种致癌PAHs的致癌风险大小顺序为BaP>DBA>BbF>InP>BaA>BkF>Chy,致癌风险总和为2.51×10-5,其中BaA、BbF、BaP、InP和DBA致癌风险在1.07×10-6~9.56×10-6之间.研究显示,西安市地表灰尘中16种PAHs对人群的健康危害相对较低.   相似文献   

10.
饮用水是人体暴露重金属的重要途径之一,准确评估人体经饮用水暴露重金属的健康风险对其采取有针对性地健康风险防范措施具有重要意义.为探索并准确识别兰州市西固区人群经饮用水途径对重金属暴露的健康风险,本研究于2015年7~9月(非采暖期)和2015年12月~2016年1月(采暖期)开展现场入户调查,采集当地0~5岁和6~17岁儿童的饮水和用水样品,并开展人群饮用水行为模式问卷调查.通过饮水和用水中Cd、Cr、Pb和As的浓度分析,结合儿童饮用水暴露行为模式特征,采用美国环保署推荐的暴露和健康风险评价模型开展儿童饮水和用水重金属暴露的健康风险研究.结果表明,两种水体中Cd、Cr、Pb和As的浓度均未超过国家生活饮用水卫生标准限值,用水重金属的浓度受季节性影响较大,而饮水较小.饮水和用水中4种重金属的非致癌和致癌风险水平范围分别为2. 82E-08~2. 43E-02和7. 55E-09~3. 62E-05,均处于可接受风险水平;但饮水中重金属的致癌和非致癌健康风险均高于用水.同一时期0~5岁儿童用水重金属暴露的致癌和非致癌风险均低于6~17岁;而0~5岁儿童饮水中重金属暴露的致癌风险低于6~1...  相似文献   

11.
为探讨曹妃甸采暖期和非采暖期PM2.5中Cr、Pb、As和Cd元素的污染特征、来源及健康风险,以华北理工大学曹妃甸校区为研究地点,于2017年12月—2018年10月采集98份PM2.5样品.利用重量法测定空气中PM2.5浓度,使用电感耦合等离子体质谱仪分析PM2.5中4种重金属元素(Cr、Pb、As和Cd)的浓度;采用Wilcoxon Mann-Whitney U检验比较采暖期与非采暖期,以及PM2.5超标日与非超标日各元素含量的差异,利用Kruskal-Wallis H检验法比较不同PM2.5浓度分级下4种金属元素浓度差异,用PMF (正定矩阵因子分解)模型对4种重金属元素的来源及贡献率进行解析,并用美国环境保护局推荐的人体暴露健康风险评价模型进行健康风险评估.结果表明:(1)曹妃甸采暖期PM2.5及Pb、As和Cd浓度均高于非采暖期,而Cr浓度略低于非采暖期.(2)PM2.5超标日Pb、As和Cd浓度均高于...  相似文献   

12.
化学组分是影响大气细颗粒物(即PM_(2.5))健康危害的重要因素,但目前流行病学研究对于颗粒物组分的暴露评价受到了传统分析方法的限制.为探索高效的颗粒物组分测定方法,本研究建立并优化了二级热脱附结合气相色谱-质谱联用(TD-GC-MS)方法,以多环芳烃(PAHs)为目标污染物开展研究.结果表明,该方法具有极高的灵敏度,当使用0.28 m~3PM_(2.5)样品时,该方法的检出限为0.018~0.26 ng·m~(-3).对于标准参考物质的测量显示,该方法具有较好的准确性和精密度.同时,分析了北京2012年3月—2013年3月PM_(2.5)样品并与索氏提取结果进行对比,发现两种方法测量3~5环PAHs的一致性较好;部分物种的差异较大,热脱附因减少前处理步骤,结果可能更为准确.北京PM_(2.5)中∑_(12)PAHs浓度为4.27~340 ng·m~(-3),采暖季比非采暖季高一个数量级.基于正矩阵因子分解法(PMF)的源解析显示,燃煤是采暖季的主要污染源,非采暖季则为交通排放.最后,估算了成年北京居民暴露于PAHs的终生致癌风险,结果表明,可重点控制交通源及煤炭源以降低其潜在危害.  相似文献   

13.
Atmospheric particles(total suspended particles(TSPs); particulate matter(PM) with particle size below 10 μm, PM10; particulate matter with particle size below 2.5 μm, PM2.5)were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5were identified by the chemical mass balance(CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5was the main component of PM210, while the presence of PM10–100was relatively weak. SO-4and NO-3concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5were obviously higher during the heating period. Organic carbon(OC) in the heating period was 2–5 times higher than in the non-heating period. Elemental carbon(EC) did not change much. OC/EC ratios were 8–11 during the heating period, which was much higher than in other Chinese cities(OC/EC: 4–6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5were higher than in PM10, because PM2.5has a higher ability to absorb toxic substances. Thus PM2.5pollution is more significant regarding human health effects in the heating period.  相似文献   

14.
采集了厦门市冬春季(2008-12-04~2009-03-20)湖里工业区和大嶝岛旅游区大气PM10样品,用GC-MS定量了PM10负载的19种多环芳烃(PAHs),并结合采样期间气象资料对灰霾期和非灰霾期多环芳烃的差异特征进行对比分析.结果表明,冬春季采样期内,厦门市大气PM10中PAHs的浓度变化范围为12.93~79.27 ng.m-3,平均42.28 ng.m-3,比2004年冬季增长近3倍.灰霾期间PM10中PAHs总的质量浓度明显高于非灰霾期,并且灰霾期间低分子量组分菲、荧蒽和芘的质量分数显著下降,高分子量组分苯并[b]荧蒽、苯并[k]荧、苯并[a]芘、苝、茚并[1,2,3-cd]芘、苯并[ghi]苝和晕苯的质量分数相对升高.采用特征化合物比值、主成分分析与多元线性回归对来源与贡献率进行了分析和估算.灰霾期间识别出3类污染源:机动车尾气排放+天然气燃烧、煤燃烧和焦炉排放,其贡献率分别为62.7%、28.1%和9.2%;非灰霾期间同样识别出这3类污染源,其贡献率分别为48.6%、36.9%和14.5%.表明厦门市冬春季灰霾期间PM10中PAHs受本地源排放影响相对较多,非灰霾期间受北方燃煤长距离传输影响更显著.  相似文献   

15.
为探讨采暖季和非采暖季大气颗粒物中有机标识组分的粒径分布特征,识别其来源,于2018年5月至2019年4月在天津采集分粒径颗粒物,利用GC-MS对9个粒径段颗粒物中17种多环芳烃(PAHs)、20种正构烷烃(n-Alkanes)和7种藿烷(hopanes)进行分析,并通过有机标识物及特征比值的方法探讨其主要来源.结果表明:非采暖季的四环多环芳烃Pyr、Ba A、Chr和五环多环芳烃BbF、Ba P呈3峰分布,其余PAHs呈双峰分布,采暖季的低环PAHs呈双峰分布,中高环PAHs近似单峰分布.根据PAHs特征比值发现,非采暖季的燃煤源和交通源是PAHs的主要贡献源,采暖季PAHs受燃煤源的影响更显著.非采暖季的正构烷烃中C29呈单峰分布,C27、C31、C32和C33近似单峰分布,其余正构烷烃呈双峰分布,采暖季的正构烷烃均呈双峰分布.根据正构烷烃碳优势指数(CPI)和主碳峰数(Cmax)发现,人为源是正构烷烃的主要来源,非采暖季受自然源的影响大于采暖季,自然源排放的正构烷烃倾向于富集在粗颗粒物上,人为源排放的正构烷烃则更倾向于富集在细颗粒物上.藿烷在粗粒径段和细粒径...  相似文献   

16.
常州市大气PM2.5中PAHs污染特征及来源解析   总被引:3,自引:2,他引:1  
2016年1~8月期间,在常州市采集到55个大气细颗粒物PM_(2.5)样品,采用气相色谱-质谱联用仪测定其中17种PAHs的含量.结果表明,冬、春、夏季PAHs的季均浓度分别为140.24、41.42和2.96 ng·m~(-3),冬季污染较严重,且以4~6环中高分子量化合物为主.Ba P日均浓度平均值3.64 ng·m~(-3),超标日占总采样天数的41%.PAHs浓度与气温(相关系数-0.643)和能见度(相关系数-0.466)显著负相关,与大气压呈显著正相关(相关系数0.544),而与风速、相对湿度相关性较差.受昼夜温差、大气层结和污染源变化等因素影响,夜间PAHs浓度高于白天.气团后向轨迹模型分析表明,常州PM_(2.5)中PAHs主要受当地排放源和短距离传输的影响,长距离传输影响小(仅占11%).特征比值法分析发现,PAHs主要来源于燃煤、机动车尾气和生物质燃烧.利用超额终生致癌风险(ILCR)模型评估PAHs通过呼吸暴露途径对人体健康的影响,结果表明:成人的ILCR值高于儿童,冬季和春季人群的ILCR值略高于风险阈值,夏季则不明显.  相似文献   

17.
北京市民居室内气态多环芳烃呼吸暴露评价   总被引:2,自引:0,他引:2  
采用被动采样装置采集并测定北京地区38个家庭采暖期和非采暖期室内空气中的7种气态多环芳烃(PAHs)的含量.结果表明,室内气态PAHs以2、3环组分为主,7种气态PAHs的总平均浓度为100 ng/m3左右.根据实测的PAHs浓度、不同年龄段人群室内平均停留时间及其相应的呼吸速率,计算得到室内成年人(包括老人)对7种气态PAHs的潜在总暴露速率在采暖期和非采暖期分别为66 ng/h和58 ng/h;而未成年人的潜在总暴露速率则分别为56 ng/h和50 ng/h.  相似文献   

18.
北京市大气颗粒物中多环芳烃(PAHs)污染特征   总被引:25,自引:9,他引:16  
对北京市2003-09~2004-07的10个月空气中的TSP样品进行了连续采样,周期为1次/周.分析了15种3~7环的PAHs,其中以4~5环为主.∑PAHs浓度及BaP的最大值分别达到705 ng/m3和52 ng/m3;春夏秋冬4季∑PAHs的平均浓度分别为46 ng/m3,16 ng/m3,52 ng/m3,268 ng/m3;BaP的4季平均浓度分别为2.8ng/m3,0.23 ng/m3,3.3 ng/m3,16ng/m3;采暖期∑PAHs平均浓度为非采暖期的9.5倍.在所分析的3种气象条件中,降水能够明显降低PAHs的浓度;非采暖期的PAHs浓度随温度的升高而降低,采暖期的浓度与温度没有明显的相关性;采暖期风速水平的增加会导致PAHs浓度的下降,而非采暖期不同环数的PAHs和风速水平的关系各异,3环的PAHs浓度随风速水平增加而增加,4、5环的PAHs浓度变化不大,6、7环PAHs随风速水平的增加而浓度下降.  相似文献   

19.
重庆金佛山土壤中PAHs含量的海拔梯度分布及来源解析   总被引:6,自引:5,他引:1  
师阳  孙玉川  梁作兵  任坤  袁道先 《环境科学》2015,36(4):1417-1424
高海拔山区的冷凝效应使其成为了持久性有机污染物(persistent organic pollutants,POPs)的储存库.利用气相色谱-质谱联用仪(GC/MS)测定了重庆金佛山南坡不同海拔高度10个表层土壤样品中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的含量和组成,运用比值法和主成分分析法解析其污染来源,采用Ba P毒性当量浓度(TEQBa P)评价其生态风险.结果表明,土壤中16种优控PAHs的含量范围是240~2 121 ng·g-1,平均值为849 ng·g-1,并以2~3环为主,7种致癌性PAHs的含量平均占到了总PAHs的17.8%.研究区土壤中不同环PAHs和PAHs的总量都随着海拔的升高有增加的趋势,其中低环的增加趋势最显著,而高环的波动性较大,但不同环PAHs占总PAHs的比例并未随着海拔的升高表现出一定的规律性.研究区土壤中PAHs主要来自于石油源,石油产品以及煤炭和生物质的燃烧源.研究区土壤已受到一定程度的污染,但毒性风险较小.  相似文献   

20.
大气颗粒物中多环芳烃的污染特征及来源识别   总被引:18,自引:3,他引:15  
研究了北京市2000年采暖期和非采暖期2个典型代表月(6月和12月)不同粒径颗粒物的质量浓度特征以及不同粒径颗粒物中ρ(PAHs)分布特征,并同时利用比值法和化学质量平衡(CMB)受体模型对可吸入颗粒物(PM10)中PAHs的来源进行识别和解析.研究结果表明:北京市采暖期ρ(颗粒物)明显高于非采暖期;采暖期和非采暖期不同粒径颗粒物的比例有差别,采暖期、非采暖期ρ(PM10)分别约占ρ(TSP)的0.662和0.734;PAHs具有更明显富集于细颗粒物中的特征;源解析结果表明燃煤污染和机动车污染是PM10中PAHs的最主要来源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号