首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The purpose of this study was to give a worldwide overview of the concentrations of typical estrogenic endocrine disrupting chemicals (EDCs) in the effluent of sewage plants and then compare the concentra- tion distribution of the estrogenic EDCs in ten countries based on the survey data of the estrogenic EDCs research. The concentrations of three main categories (totally eight kinds) of estrogenic EDCs including steroidal estrogens (estrone (El), estradiol (E2), estriol (E3) and 17a- ethynylestradiol (EE2)), phenolic compounds (nonylphe- nol (NP) and bisphenol A (BPA)) and phthalate esters (dibutyl phthalate (DBP) and dibutyl phthalate (2- ethylhexyl) phthalate (DEHP)) in the effluents of sewage plants reported in major international journals over the past decade were collected. The statistics showed that the concentration distributions of eight kinds of EDCs were in the range of ng·L^-1 to μg·L^-1. The concentrations of steroidal estrogens mainly ranged within 50.00 ng. L-1, and the median concentrations of El, E2, E3 and EE2 were 11.00, 3.68, 4.90 and 1.00 ng·L^-1, respectively. Phenolic compounds and phthalate esters were found at pg. L-1 level (some individual values were at the high level of 40.00 μg·L^-1). The median concentrations of BPA, NP, DBP and DEHP were 0.06, 0.55, 0.07 and 0.88 μg·L^-1, respectively. The concentrations of phenolic compounds and phthalate esters in the effluents were higher than that of steroids estrogens. The analysis of the concentration in various ten countries showed that steroids estrogens, phenolic compounds and phthalate esters in sewage plant effluents were detected with high concentration in Canada, Spain and China, respectively.  相似文献   

2.
多氯联苯作为一种环境内分泌干扰物,具有一定的雌激素干扰效应,导致动物雌激素水平紊乱或功能异常,从而影响生殖、发育或行为。羟基多氯联苯是多氯联苯最主要的活性代谢产物,已经在动物和人体组织中被检出。羟基多氯联苯的化学性质和分子空间构象使其雌激素干扰效应可能较母体化合物更强。因此,它们对人类和动物机体的潜在影响以及由此带来的新的毒理学问题成为内分泌干扰研究领域的热点之一,相关的毒性作用机制需要进一步探索。本文对多氯联苯的代谢途径、羟基多氯联苯在生物体内的暴露水平、雌激素干扰效应及作用机制进行综述。  相似文献   

3.
Previous studies in the Douro River estuary, based on occasional sampling, showed the presence of several estrogenic disrupting chemicals (EDCs). In sequence, we hypothesized that such type of pollution was more likely an enduring issue than an occasional phenomenon, and that it may even affect recreational beaches in each side of the estuarine mouth. Thus to conclude about the continuous influx of EDCs, water samples were taken twice a day, once per a week, from March to May of 2009, at four sites within the estuary and at two sites in the coastline. After solid-phase extraction, the extracts were prepared for GC-MS analysis of 11 reference EDCs. These embraced natural and pharmaceutical estrogens (17β-estradiol, estrone and 17α-ethynylestradiol) and xenoestrogenic industrial pollutants (4-octylphenol, 4-nonylphenol, and their mono and diethoxylates and bisphenol A). Data showed the ubiquitous presence of potentially hazardous amounts of natural estrogens (particularly of estradiol, ca 5.5?ng?L?1) and persistent organic pollutants such as nonylphenol mono (up to 550?ng?L?1) and diethoxylate (up to 2000?ng?L?1). It was concluded that the targeted area is continuously polluted by the assayed EDCs, and as a consequence, conditions exist for endocrine disturbance in the biota by chronic exposure to EDCs.  相似文献   

4.
In vitro reporter gene assays using vertebrate cell lines or yeast have been used for assessment of the estrogenic chemicals. However, estrogen receptor α (ERα)- and ERβ-mediated reporter gene system in fish has yet to be developed. In the present study, we developed an ERα- and ERβ-mediated reporter gene assay in fish and estimated estrogenic activities of 17β-estradiol (E2), p-nonylphenol (NP), bisphenol A (BPA), p,p′-DDE, and genistein (Gen) using the in vitro reporter assay. The activity was intensely induced by transfection with either ERα or ERβ expression plasmid under E2 or Gen administration, whereas it was significantly induced by transfection with ERα expression plasmid, but not with ERβ expression plasmid under NP administration. On the other hand, the activity was induced more intensely by transfection with ERα expression plasmid than ERβ expression plasmid under BPA or p,p′-DDE administration. These results indicate that there are obvious differences in the activity through ERα and ERβ among the estrogenic chemicals examined in vitro. Thus, the in vitro reporter assay provides an excellent system for elucidating the action mechanism of estrogenic chemicals in fishes. Physical and Chemical Impacts on Marine Organisms, a Bilateral Seminar Italy–Japan held in November 2004  相似文献   

5.
Some phenols, including pentachlorophenol, dichlorophenol, alkylphenols (nonylphenol & octylphenol) and bisphenol-A, have been identified as endocrine disrupting chemicals (EDCs). These phenolic EDCs are extensively used in a wide range of household products, thus posing potential health risks for humans exposed to them. From the viewpoints of ecotoxicology, human health and regulations, it is urgent to restrict the emissions and releases of these estrogenic chemicals from the industrial processes and commercial products. This review article first focused on the physicochemical properties of phenolic EDCs and their industrial/commercial uses. Furthermore, their environmental distributions and regulatory frameworks for integrated risk management of these chemicals in Taiwan were conducted as a case study. Emphasis was thus put on the cross-ministerial joint venture (i.e., environment, health, agriculture, labor, and industry authorities), and the government policy on the risk management of EDCs. Finally, some recommendations for pollution prevention and toxicity reduction of phenolic EDCs were also addressed and analyzed to progress towards a sustainable society in Taiwan.  相似文献   

6.
计算毒理学方法已成为辅助内分泌干扰物(EDCs)管理的决策支持工具。因此,发展内分泌干扰效应指标的(定量)结构活性关系((Q) SAR)等预测模型对于实现EDCs环境管理具有重要的意义。在雌激素受体(Q) SAR模型研究方面,目前主要针对人、牛、大鼠和小鼠等物种的雌激素受体干扰效应进行了研究,而对鱼等水生生物雌激素受体干扰效应等指标的(Q)SAR模型研究还较少。本研究采用基于欧几里德距离的K最近邻(k NN)分类算法,构建了斑马鱼雌激素受体干扰效应的二元分类模型。结果表明,2个最优模型训练集和验证集的预测准确度(Q)、敏感性(Sn)和特异性(Sp)参数均大于0.93,说明模型具有较好的预测能力。因此,能够用所建模型填补模型应用域内其他化合物缺失的斑马鱼雌激素受体干扰效应定性数据。  相似文献   

7.
Alterations in development and reproduction as a consequence of exposure to endocrine-disrupting chemicals (EDCs) have been demonstrated in many wildlife species. Animals living in, or closely associated with, the aquatic environment are particularly vulnerable to endocrine disruption because thousands of chemicals are actively disposed into rivers, estuaries and seas. Fish have thus been a focus in endocrine disruption studies, and some of the most comprehensive studies on the disruption of sexual development and function are on the roach (Rutilus rutilus). This paper provides a critical analysis of the roach as a sentinel for studies into endocrine disruption. The paper starts by describing what is known on the basic reproductive biology of the roach, information essential for interpreting chemical effect measures on sexual development and function. We then analyze where and how the roach has been applied to improve our understanding of the estrogenic nature of discharges from wastewater treatment works (WWTWs) and describe the phenomenon of feminized male roach in UK rivers. In this paper, the causation of these effects and issues of relative susceptibility and sensitivity of the roach to the effects of estrogenic EDCs are addressed. The paper then describes the ongoing work on the development of genetic and genomic resources for roach and analyses how these are being applied in studies to understand the mechanisms of disruption of sexual development. Finally, the paper addresses the biological significance of sexual disruption and intersex for the individual and discusses the possible implications for wild populations.  相似文献   

8.
The Ave River flows through the most urbanized and industrialized Porto district areas. Despite ovotestis was recently reported in male fish from the estuary, no data exist on the water levels of natural and pharmaceutical estrogens (17β-estradiol, estrone, and 17α-ethynylestradiol), xenoestrogenic industrial pollutants (4-octylphenol, 4-nonylphenol and their mono and diethoxylates, and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, and genistein), and sitosterol. Absence of analyses applies to the river, estuary, and nearby coastline. Those compounds mimic the action of endogenous estradiol, being well-recognized endocrine disrupters (EDCs). To conclude about suspected influxes of estrogenic EDCs into the river and coastline, water samples were taken at eight sites every two months, during one year (2010), at low tide. Data showed ubiquitous presence of potentially hazardous amounts of estrogens (particularly ethynylestradiol, up to 10 ng L?1), nonylphenol (up to 250 ng L?1), and sitosterol (up to 6 μg L?1), which helps explaining the ovotestis emergence in local fish. Also, because physicochemical parameters used in water quality evaluation, such as pH, dissolved oxygen, nitrates, and nitrites levels, were within legal limits – suggesting good quality – our study supports that assessment of human and environmental risks by targeting surface waters requires integrating EDCs monitoring in routine analyses.  相似文献   

9.
污水处理厂出水是环境中内分泌干扰物的重要来源之一。针对关注较少的抗雄激素样内分泌干扰物,在已有研究基础上,依据抗雄激素样化合物的抗雄激素样活性风险,建立了污水处理厂出水中抗雄激素样化合物控制的优先性排序方法。在污水处理厂出水中,共有147种疑似抗雄激素样化合物需要关注,主要为农药类,约占总数的60%。抗雄激素样活性风险排名前10%的化合物如下:邻苯二甲酸二丁酯、邻苯二甲酸二己酯、双酚A、溴螨酯、对叔辛基酚、腐霉利、烯菌酮、氯苯嘧啶醇、烯酰吗啉、杀螟松、十二烷基酚、敌草隆、咯菌酯、2-羟基-4'-甲氧基二苯甲酮、以及邻苯基苯酚。  相似文献   

10.
Effluents from wastewater treatment plant (WWTP) have been reported to have a broad spectrum of endocrine disrupting compounds (EDCs). The majority of studies have focused on the occurrence of estrogenic activity, while ignoring nuclear hormone receptors (NRs) pathways. In the present study, a battery of in vitro yeast bioassays and a cell bioassay, including antagonistic and agonistic effects on estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), estrogen- related receptor (ERR) and aryl hydrocarbon receptor (AHR), were conducted to evaluate the removal efficien- cies of EDCs by different treatment processes of a WWTP located in Beijing. Estrogenic, anti-estrogenic, anti- androgenic, anti-progesteronic, anti-ERR and the activa- tion of AHR activities were detected in samples from all treatment processes and the receiving water. The concen- tration of estrogenic contaminants with estradiol (E2) equivalent concentrations ranged from 0.82 x 10-9 to 3.54 x 10 9g Ee_EQ.L-1. The concentration of anti-estrogenic contaminants with 4-hydroxytamoxifen (4-OHT) equiva- lent concentrations ranged from 1.24 × 10-6 to 2.36 x 10-6 g 4-OHT-EQ.L-1. The concentration of anti-androgenic contaminants ranged from 2.21 x 10-s to 3.52 × 10-6g flutamide-EQ. L-1. The concentration of anti-progesteronic contaminants ranged from 3.15 x 10^-5 to 2.71 x 10^-4g RU486-EQ. L-1. The concentration of anti-ERR contami- nants ranged from 7.09 x 10-5 to 6.50 x 104 g 4-OHT-EQ × L^-10. The concentration of AHR activators ranged from 1.7 × 10-10 to 3.4 × 10^-10g TCDD-EQ-L-1. These processes including secondary clarifier, coagulation, as well as coal and sand filtration could eliminated 67.2% of estrogenic contaminants, 47.0% of anti-estrogenic contaminants, 98.3% of anti-androgenic contaminants, 88.4% of anti- progesteronic contaminants, 65.4% of anti-ERR contami- nants and 46.9% of AHR activators. WWTP effluents contain multiple receptor disruptors may have very complex adverse effects on exposed organisms.  相似文献   

11.
In recent years, natural and synthetic estrogens have been recognized as endocrine disruptors in aquatic organisms. Although natural and synthetic estrogens are known to be degraded by microbes, only limited information about their degradation pathways is available. Here, we studied the degradation pathways of a natural estrogen, 17β-estradiol, by the nitrifying microorganism Nitrosomonas europaea, and we determined whether the degradation products of 17β-estradiol had estrogenic activity. To identify the degradation products, we subjected the culture solution to solid-phase extraction, and the extract was analyzed by gas chromatography–mass spectrometry. The potential estrogenic activity of the degradation products was investigated by means of a yeast two-hybrid assay. 1,3,5(10),16-Estratetraen-3-ol (estratetraenol) was newly identified as a degradation intermediate produced by dehydration of 17β-estradiol. Estratetraenol was also degraded by N. europaea, and its degradation rate was faster than that of 17β-estradiol. The two-hybrid assay confirmed that estratetraenol acted as a ligand for the estrogen receptor; estratetraenol thus has potential estrogenic activity. N. europaea eliminated the estrogenic activity derived from 17β-estradiol. This paper is the first to report dehydration as a mechanism of microbial estrogen degradation.  相似文献   

12.
Japanese medaka (Oryzias latipes) has been widely used for the evaluation of the toxicity of endocrine active chemicals (EACs) and other chemicals as well as for monitoring the adverse effects of effluent discharges in relation to sexual development and function. It is useful for these evaluations for many reasons including the following: 1) it has a short life cycle facilitating studies extending over long phases of development and over multigenerations, 2) it is easy to rear, 3) male and female phenotypes can easily be distinguished on the basis of secondary sex characteristics, and 4) a genetic marker (DMY) is available for identifying the true genotypic sex. Several biomarkers have been found to be useful for identifying the effects of exposure to estrogenic and androgenic chemicals in medaka and they include increased levels of hepatic vitellogenin (VTG) and testis-ova induction in males for exposure to estrogenic chemicals, and decreased levels of hepatic VTG in females and an altered morphology of dorsal and anal fins and formation of papillae for androgenic chemicals. In this paper, we present a critical analysis of the use of medaka as a test species for studies of endocrine disruption and report on the use of sex-related genetic markers and alterations in gonadal development, including the induction of testis-ova formation, for assessing the disruptive effects of EACs. In this paper, we focus on some of the more recent studies and findings.  相似文献   

13.
Various recently published studies indicate increases in disorders of development and function of the male reproductive system during the last decades. This refers to reports on a decline in sperm count and increased incidences of testicular cancer, cryptorchidism and hypospadias. While the results of studies on the increase in (geographically varying) incidences of testicular cancer are unequivocal, data on changes in rates of cryptorchidism and hypospadias are rather limited. Meanwhile, numerous retrospective studies on changes in sperm concentrations in the ejaculate of normal men have been published. However, at present it is not possible to draw generally valid conclusions since results from some countries or geographic regions indicate a significant decline while in others either no changes or even slight increases have been reported. According to the so-called “Estrogen hypothesis”, the common cause of these disorders shall be an increased prenatal exposure to estrogens. Concerning exogenous estrogens, synthetic estrogens, phyto and mycoestrogens, and chemicals with estrogenic activity could play a role. A search in the available literature has revealed that at present more than 100 chemical compounds from different classes are known to possess estrogenic activity. This, however, is not the only way in which chemicals may be endocrinically active. Ubiquitously distributed compounds from the classes of polychlorinated dibenzodioxins/furans and biphenyls exhibit an antiestrogenic potential, while chemicals like p,p′-DDE, Linuron and Vinclozolin being competitive androgen receptor antagonists may act as antiandrogens. Concerning the very limited current knowledge, the estrogen hypothesis at present only represents an interesting basis for discussion. Most questions that would have to be answered in order to accept, reject or modify tis hypothesis are either completely open or only partially understood. Thus, there is an urgent need to initiate research efforts to clarify the toxicological significance for ecosystems and humans of chemicals with endocrine activity.  相似文献   

14.
There is growing concern about the human-health impact of environmental chemicals that have the potential to disrupt normal endocrine function. Endocrine disrupting chemicals (EDCs) include structurally diverse organochlorine pesticides, polychlorinated biphenyls (PCBs), plasticizers, fungicides, herbicides and pharmaceutical compounds, and can have a profound impact on development, and on reproductive, neurological and immune system functions. While many studies have focused on the role of androgen receptor, estrogen receptor and aryl hydrocarbon receptor in mediating the effects of EDCs, other nuclear receptors that regulate steroid hormone action and metabolism may also serve as targets of EDC action. This review focuses on two classes of EDCs, PCBs and phthalate monoesters, both of which have been shown to interact with pregnane X receptor (PXR), a member of the nuclear receptor superfamily that regulates a large number of target genes, many of which have important roles in steroid metabolism and transport. Recent findings on the ability of PCBs and phthalate monoesters to activate PXR are discussed and the potential role of PXR and other intracellular receptor proteins in mediating toxicities associated with EDC exposure is considered. Finally, we discuss several gaps in our knowledge regarding the actions of EDCs and the difficulties associated with the evaluation of risks associated with exposure to these endocrine active environmental chemicals.  相似文献   

15.
环境中存在的多种内分泌干扰物能够与生物体内的天然激素受体选择性结合并产生多种生物效应,由于受体功能区三维结构的不同,其内分泌干扰活性存在着种间、种内、组织间等的种种差异,限制了不同物种间毒性效应的外推研究,增加了环境内分泌干扰物筛选和风险评价的难度.论文综述了基于受体介导的环境内分泌干扰物生物活性与相应受体选择性及受体功能区结构关系的研究进展,并利用分子模拟方法分析探讨了雌激素受体与部分化合物结合作用模式,讨论了目前存在的问题,对以后有关方面的研究提出了建议.  相似文献   

16.
As a green oxidant, permanganate has received considerable attention for the removal of micropollutants in drinking water treatment. To provide a better understanding of the oxidation of organic micropollutants with permanganate, the oxidation kinetics of 32 micropollutants were compiled. The pollutants include algal toxins, endocrine disrupting chemicals (EDCs), and pharmaceuticals. The oxidation kinetics of micropollutants by permanganate were found to be first order with respect to both contaminant and permanganate concentrations from which second-order rate constants (k″) were obtained. Permanganate oxidized the heterocyclic aromatics with vinyl moiety (i.e., microcystins, carbamazepine, and dichlorvos) by the addition of double bonds. For the polycyclic aromatic hydrocarbons (PAHs) with alkyl groups, permanganate attacked the benzylic C-H through abstraction of hydrogen. The mechanism for the oxidation of phenolic EDCs by permanganate was a single electron transfer and aromatic ring cleavage. The presence of background matrices could enhance the oxidation of some phenolic EDCs by permanganate, including phenol, chlorinated phenols, bisphenol A, and trichlosan. The toxicity of dichlorvos solution increased after permanganate oxidation, and the estrogenic activity of bisphnol A/estrone increased significantly at the beginning of permanganate oxidation. Therefore, the toxicity of degradation products or intermediates should be determined in the permanganate oxidation processes to better evaluate the applicability of permanganate. The influence of background ions on the permanganate oxidation process is far from clear and should be elucidated in the future studies to better predict the performance of permanganate oxidation of micropollutants. Moreover, methods should be employed to catalyze the permanganate oxidation process to achieve better removal of micropollutants.  相似文献   

17.
We studied the lipid dynamics (lipid contents, classes and fatty acids) during oogenesis and early embryogenesis of 7 viviparous and 3 oviparous deepwater chondrichthyans. Mature pre-ovulated ovarian follicles of all species were high in lipid content, indicative of large energetic expenditure and high maternal investment. Larger lipid reserves were found in viviparous dogshark (28–36% wet weight, ww) compared to oviparous chimaeras (19–24% ww) and catshark, F. boardmani (18% ww). Neutral lipids and monounsaturated fatty acids were the main source of lipidic energy during vitellogenesis and gestation. For most species, there was a peak in total lipid content, levels of storage lipids and essential fatty acids at time of ovulation. Interspecific variation of total lipid yolk reserves and lipid class profiles was largely explained by differences in parity mode, reproductive (continuous vs. non-continuous oocytes development) strategy and depth-related physiological adaptations. Fatty acid profiles were less variable among species with the most important fatty acids including: 16:0, 18:1ω9, 20:1ω9, 20:4ω6 and 22:6ω3. These findings provide a greater biochemical understanding of different maternal-embryonic relationships among chondrichthyans, which can be used as a baseline for subsequent comparative studies.  相似文献   

18.
污染物对鱼类的甲状腺激素干扰效应及其作用机制   总被引:1,自引:0,他引:1  
环境中可以影响生物体甲状腺激素合成、运输、作用和代谢等过程的化学污染物称为甲状腺激素干扰物(TDCs),TDCs被认为是继环境雌激素之后最重要的一类内分泌干扰物.鱼类甲状腺的结构、甲状腺激素的转运和功能等与哺乳动物有较大差别.与哺乳动物相比,污染物干扰鱼类甲状腺激素的研究还较为缺乏.在介绍鱼类甲状腺结构、功能以及甲状腺激素在鱼体内动态过程的基础上,分析了污染物对鱼类的甲状腺激素干扰效应及其作用机制,探讨了今后鱼类甲状腺激素干扰研究的主要方向.污染物能对鱼类甲状腺激素水平、相关酶活性及甲状腺结构等产生直接影响;同时,污染物还可以通过干扰鱼类甲状腺系统对由甲状腺激素调节的重要生理过程如生长、繁殖和发育等产生间接影响.污染物主要通过干扰鱼类甲状腺激素的合成与分泌、转运、清除以及与甲状腺激素受体(TR)的相互作用等机制对鱼类产生不利影响.在污染物对鱼类甲状腺激素干扰的研究中,今后应重点关注环境中"新型"卤化有机污染物、鱼类早期发育过程与甲状腺激素干扰效应的关系、TR介导机制以及TDCs的筛选方法等.  相似文献   

19.
The effects of various concentrations of a synthetic estrogen, ethynylestradiol (EER), and an estrogenic compound, bisphenol A (BPA), on the development of two sea urchin species, Hemicentrotus pulcherrimus and Strongylocentrotus nudus, were examined. At concentrations of 2.5 μM or higher of EER the zygotes did not hatch; at 0.98–1.25 μM they developed but had abnormal morphology; and at concentrations lower than 1 μM there was no effect on embryogenesis. The dose dependency was the same for both species, but more embryos of S. nudus showed exogastrulation at 3–10 μM EER. The effect of BPA on early development was less remarkable than that of EER; most embryos developed normally even in the presence of 2.5 μM BPA. The feeding larvae progressed and finally metamorphosed into juveniles even at 0.1–3 μM EER. The chemicals had opposing effects on the growth of the juveniles. A low dose of EER (0.1–1 μM) promoted growth and the average diameter of the test was bigger than that of the control group; the same dose of BPA suppressed growth and the test was smaller than that of the control group. These results show that the sensitivity and response to endocrine disrupter chemicals changes markedly during the ontogeny of sea urchins. Physical and Chemical Impacts on Marine Organisms, a Bilateral Seminar Italy-Japan held in November 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号