首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
毕薇薇  陈娅  马晓雁  邓靖 《中国环境科学》2020,40(11):4762-4769
采用水热法成功制备了磁性有序介孔碳(Fe-OMC),用于吸附水中双酚A (BPA).采用高倍投射电镜、X射线衍射仪、傅里叶红外光谱仪、比表面积分析仪和振动样品磁强计对Fe-OMC进行表征.结果表明,该吸附剂具备较大的比表面积、独特的有序介孔孔道结构、丰富的含氧官能团以及较强的超顺磁性.Fe-OMC能够高效地吸附去除水中的BPA,平衡吸附量可达72.62mg/g,经过外加磁场分离回收后依旧具备较好的吸附性能.随着BPA浓度从1mg/L提高到20mg/L,其平衡吸附量由8.33mg/g增至91.78mg/g.随着pH值的升高呈现出先降低后升高再降低的趋势,最高吸附量出现在pH=8(75.34mg/g).Fe-OMC对BPA的吸附过程可用准二级吸附动力学模型和Langmuir吸附等温模型进行描述.计算的热力学参数表明,Fe-OMC对BPA的吸附过程是自发进行的放热过程.  相似文献   

2.
毕薇薇  陈娅  马晓雁  邓靖 《中国环境科学》2021,40(11):4762-4769
采用水热法成功制备了磁性有序介孔碳(Fe-OMC),用于吸附水中双酚A (BPA).采用高倍投射电镜、X射线衍射仪、傅里叶红外光谱仪、比表面积分析仪和振动样品磁强计对Fe-OMC进行表征.结果表明,该吸附剂具备较大的比表面积、独特的有序介孔孔道结构、丰富的含氧官能团以及较强的超顺磁性.Fe-OMC能够高效地吸附去除水中的BPA,平衡吸附量可达72.62mg/g,经过外加磁场分离回收后依旧具备较好的吸附性能.随着BPA浓度从1mg/L提高到20mg/L,其平衡吸附量由8.33mg/g增至91.78mg/g.随着pH值的升高呈现出先降低后升高再降低的趋势,最高吸附量出现在pH=8(75.34mg/g).Fe-OMC对BPA的吸附过程可用准二级吸附动力学模型和Langmuir吸附等温模型进行描述.计算的热力学参数表明,Fe-OMC对BPA的吸附过程是自发进行的放热过程.  相似文献   

3.
以间苯二酚和甲醛为原料,采用溶胶-凝胶法,通过调整碱性催化剂碳酸钠用量,制备了一系列介孔丰富的炭干凝胶吸附剂.主要考察了介孔炭干凝胶对染料孔雀石绿的吸附性能,并进行了孔结构、表面形貌和官能团的分析.结果表明,催化剂用量不同的介孔炭干凝胶具有不同的粒径和孔径,当间苯二酚与碳酸钠的物质的量比为1000∶1时,制得的吸附剂比表面积和介孔最丰富,且其对孔雀石绿的吸附量最大.同时,介孔炭干凝胶的用量、吸附时间和温度对吸附容量均有一定的影响,吸附过程符合伪二阶动力学模型和Langmuir等温模型,最大吸附量为208.33 mg·g~(-1);吸附过程是自发的吸热反应.介孔炭干凝胶对孔雀石绿的主要吸附机理是染料分子与羟基和羧基等官能团之间存在静电作用、氢键作用及范德华力作用.  相似文献   

4.
Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons   总被引:3,自引:0,他引:3  
A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2 /g-sorbent in 15% CO2 /N2 at 75°C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2 . In addition, the developed sorbent could be regenerated easily at 100°C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.  相似文献   

5.
Progress in carbon dioxide separation and capture: A review   总被引:18,自引:2,他引:18  
This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertilization and mineral carbonation techniques are also covered. Underground injection and direct ocean dump are not covered.  相似文献   

6.
采用微波辅助磷酸活化制备了高中孔率蔗渣基介孔炭,并通过硝酸氧化和乙二胺聚合在其孔道内修饰了含氮多胺基团,探索了溶液浓度、温度、吸附剂剂量等对改性介孔炭的Pb(II)吸附性能、行为和热力学特性的影响.结果表明,蔗渣基介孔炭较宽的孔道结构可通过乙二胺缩水聚合反应在其表面接枝酰胺、仲胺等含氮基团;胺化改性增强化了介孔炭对水溶液中Pb(II)的固定作用,改性后介孔炭对Pb(II)的吸附量高达180mg/g,是改性前介孔炭的1.5倍;改性介孔炭对Pb(II)的去除率显著增加,对溶液浓度<60mg/L的Pb(II)去除率接近100%.等温吸附与热力学数据表明,胺化改性介孔炭对Pb(II)的吸附位能量存在差异化,吸附是自发的吸热反应过程,温度对铅(II)离子吸附有促进作用,化学作用在吸附过程中发挥了重要作用.  相似文献   

7.
闫婷婷  江芳  陈欢 《环境科学学报》2014,34(6):1464-1472
以SBA-15为模板、四氯化碳和乙二胺为前驱体,通过聚合反应制备了介孔氮化碳(Mesoporous Carbon Nitride,MCN).同时,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)和元素分析等手段对MCN进行了表征分析,并考察了MCN对水中全氟辛烷磺酸(PFOS)的吸附性能.结果表明,MCN吸附PFOS的过程符合准二级动力学模型,其吸附行为遵循Langmuir等温线模型;MCN吸附去除PFOS的效率受溶液pH值、溶液温度及共存离子等因素的影响,其中,溶液pH值的影响最为显著,当溶液pH值分别为2.2和10.6时,MCN对PFOS的去除率分别为98.15%和5.59%;吸附PFOS饱和后的MCN可以用0.1 mol·L-1NaOH溶液进行解吸,经5次循环/再生后的MCN对PFOS的去除率仍在95%以上.与介孔碳(CMK-3)和活性炭(AC)相比,MCN对PFOS显示出更优越的吸附能力.  相似文献   

8.
Carbon dioxide(CO_2) is the largest anthropogenic greenhouse gas(GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO_2 from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes.Activated carbon is widely used as a universal separation medium with series of advantages compared to the first generation capture processes based on amine-based scrubbing which are inherently energy intensive. The goal of this review is to elucidate the three CO_2 capture technologies with a focus on the use of activated carbon(AC) as an adsorbent for post-combustion anthropogenic CO_2 flue gas capture prior to emission to atmosphere. Furthermore, this coherent review summarizes the recent ongoing research on the preparation of activated carbon from various sources to provide a profound understanding on the current progress to highlight the challenges of the CO_2 mitigation efforts along with the mathematical modeling of CO_2 capture. AC is widely seen as a universal adsorbent due to its unique properties such as high surface area and porous texture. Other applications of AC in the removal of contaminants from flue gas, heavy metal and organic compounds, as a catalyst and catalyst support and in the electronics and electroplating industry are also discussed in this study.  相似文献   

9.
Ordered mesoporous carbon(OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound(VOC)disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.  相似文献   

10.
Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.  相似文献   

11.
Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.  相似文献   

12.
Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.  相似文献   

13.
Studies on the effect of the chlorine content of chlorophenols (CPs) on their adsorption from aqueous solution by mesoporous SBA-15 are important in understanding the mechanisms of CP adsorption. In this study, three CPs with different degrees of chlorine content (i.e., 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol) were investigated. The effects of parameters such as temperature and solution pH were studied. The results showed that CP adsorption by SBA-15 increased with increasing number of chlorine substituents and depended strongly on the temperature and solution pH. Thermodynamic parameters such as Gibbs free energy change (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0) were also calculated. By comparison of the adsorption coefficient of CPs with varying physical-chemical properties (size, hydrophobicity and electron density), we propose that hydrophobic interactions between CPs and the SBA-15 surface, as well as electron donor-acceptor (EDA) complexes between oxygen of the siloxane surface of SBA-15 (e--donor) and the πup-system of the CPs (e--acceptor), were dominant adsorption mechanisms.  相似文献   

14.
Carbon dioxide (CO2) adsorption on a standard metal-organic framework Mg2(dobdc) (Mg/DOBDC or Mg-MOF-74) and a tetraethylenepentamine (TEPA) modified Mgz(dobdc) (TEPA-Mg/DOBDC) were investigated and compared. The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. CO2 adsorption capacity was measured by dynamic adsorption experiments with N2-CO2 mixed gases at 60℃. Results showed that the CO2 adsorption capacity of Mg/DOBDC was significantly improved after amine modification, with an increase from 2.67 to 6.06 mmol CO2/g adsorbent. Moreover, CO2 adsorption on the TEPA-Mg/DOBDC adsorbent was promoted by water vapor, and the adsorption capacity was enhanced to 8.31 mmol CO2/g absorbent. The adsorption capacity of the TEPA-Mg/DOBDC adsorbent dropped only 3% after 5 consecutive adsorption]desorption cycles. Therefore, this kind of adsorbent can be considered as a promising material for the capture of CO2 from flue gas.  相似文献   

15.
Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that e orts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray di raction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40°C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13.  相似文献   

16.
The mesoporous Cu/Mg/Fe layered double hydroxide(Cu/Mg/Fe-LDH) with carbonate intercalation was synthesized and used for the removal of arsenate from aqueous solutions.The Cu/Mg/Fe-LDH was characterized by Fourier transform infrared spectrometry,X-ray diffraction crystallography,scanning electron microscopy,X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller.Effects of various physico-chemical parameters such as pH,adsorbent dosage,contact time and initial arsenate concentration on the adsorption of arsenate onto Cu/Mg/Fe-LDH were investigated.Results showed that it was efficient for the removal of arsenate,and the removal efficiency of arsenate increased with the increment of the adsorbent dosage,while the arsenate adsorption capacity decreased with increase of initial pH from 3 to 11.The adsorption isotherms can be well described by the Langmuir model with R 2 > 0.99.Its adsorption kinetics followed the pseudo second-order kinetic model.Coexisting ions such as HPO42-,CO32-,SO42and NO3could compete with arsenate for adsorption sites on the Cu/Mg/Fe-LDH.The adsorption of arsenate on the adsorbent can be mainly attributed to the ion exchange process.It was found that the synthesized Cu/Mg/Fe-LDH can reduce the arsenate concentration down to a final level of < 10 μg/L under the experimental conditions,and makes it a potential material for the decontamination of arsenate polluted water.  相似文献   

17.
Novel amino (-NH2) functionalized mesoporous polyvinyl pyrrolidone (PVP)/SiO2 composite nanofiber membranes were fabricated by a one-step electrospinning method using poly (vinyl alcohol) and tetraethyl orthosilicate (TEOS) mixed with cationic surfactant, cetyltrimethyl ammonium bromide (CTAB) as the structure directing agent. Ureidopropyltriethoxysilane was used for functionalization of the internal pore surfaces. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), element analyzer and N2 adsorption-desorption isotherms. The nanofiber diameters, average pore diameters and surface areas were 100-700 nm, 2.86 nm and 873.62 m2/g, respectively. These mesoporous membranes functionalized with -NH2 groups exhibited very high adsorptions properties based on the adsorption of Cr3++ from an aqueous solution. Equilibrium adsorption was achieved after approximately 20 min and more than 97% of chromium ions in the solution were removed. The membrane could be regenerated through acidification.  相似文献   

18.
污泥活性炭对染料的吸附动力学研究   总被引:34,自引:2,他引:34  
以城市污水处理厂脱水污泥作为原料,采用化学活化法(ZnCl2作为活化剂)制得污泥活性炭,全面研究了污泥活性炭对活性艳红K-2BP、酸性大红GR和直接紫N这3种染料的吸附动力学行为.结果表明,污泥活性炭可以有效地吸附染料,实现污泥的资源化;3种染料的平衡吸附量qe均随着染料初始浓度和温度的增大而增大,相同条件下平衡吸附量qe的大小顺序为:酸性大红GR>活性艳红K-2BP>直接紫N;伪二级动力学模型能够很好地描述3种染料在污泥活性炭上的吸附动力学行为;对于活性艳红K-2BP和直接紫N,颗粒内扩散过程是该吸附速率的控制步骤,但不是唯一的速率控制步骤,吸附速率同时还受颗粒外扩散过程的控制,而对于酸性大红GR,颗粒内扩散过程不是吸附速率的控制步骤;污泥活性炭对3种染料的吸附是一个吸热过程,吸附活化能较小,主要为物理吸附过程.  相似文献   

19.
载铁活性炭对水中草甘膦吸附性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过浸渍-焙烧法制备载铁活性炭,并用SEM电镜分析了载铁活性炭表面形态,研究了载铁活性炭(Fe-AC)对草甘膦溶液的吸附等温线和吸附动力学,并分析了各种影响因素对载铁活性炭吸附性能的影响.实验表明,Freundlich方程可以对Fe-AC草甘膦吸附等温线进行很好拟合,最大吸附量约为5.8mmol/g;其吸附动力学过程用Lagergren方程拟合,吸附速率常数在0.088min-1左右,且随着温度的升高逐渐减小.根据Kannan & Sundaram颗粒内扩散模型拟合,颗粒内扩散速率常数kp大于10mg·min-1/2/g,并随着起始温度的升高而减小.由于草甘膦的存在形态和Fe-AC材料表面性质的变化,AC-Fe对草甘膦的吸附能力随水溶液的pH升高而降低.NaCl的存在产生拮抗效应使得Fe-AC对草甘膦的吸附容量大大下降,随着NaCl浓度增加至4g/L后,盐析效应开始占主导地位,使得Fe-AC的吸附容量略有增加;由于草甘膦分子的空间位阻效应和亚磷酸根与载铁活性炭表面形成较强的络合物,使得随亚磷酸根浓度的升高Fe-AC对草甘膦的吸附量持续下降.  相似文献   

20.
消除及回收烟气中SO2的糠醛渣活性炭研究   总被引:11,自引:0,他引:11  
利用糠醛渣废料研制成一种新型改质炭(简称渣炭),采用温度程序脱附(TPD),色谱质谱连用(GC-MS),比表面测定(BET),静态与动态吸附以及二氧化硫氧化反应等方法,对渣炭的物化性质进行表征,并与几种商品炭进行比较;考察其反应条件,表明该渣炭无需添加任何活性组分便具有良好的脱硫性能,适用于烟气脱硫制酸过程。认为渣炭上某些羟基及羰基表面基团是脱硫活性中心,丰富的中孔有利于反应扩散。在烟气量5000Nm~3/h的中试装置上,于空速500h~(-1)。入口烟温70℃以及二氧化硫浓度1500—2500ppm的条件下,对工业放大渣炭进行验证,连续累计操作6000多小时,二氧化硫消除率约70%及副产硫酸的浓度约30%,并且,该渣炭的成本可以比碘炭降低40%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号