首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of mercury and arsenic in fish from the Persian Gulf were determined by graphite furnace atomic absorption spectrometry. Concentrations of the metals in muscle samples were 0.049–0.402 μg g?1 for mercury and 0.168–0.479 μg g?1 for arsenic, with means of 0.133 and 0.312 μg g?1, respectively. The maximum daily consumption rate (grams per day) and meal consumption limit (meals per month) was calculated to estimate health risks associated with fish consumption. According to the results, the maximum allowable consumption rate varies between 8–56 and 15–96 g/day base on mercury and arsenic content, respectively. The results of this study indicate that the concentration of mercury and arsenic is well below the maximum permissible levels for mercury (0.5 μg g?1) and arsenic (6 μg g?1) according to international standards.  相似文献   

2.
Arsenic is a widespread contaminant in the environment. The intake of water containing high concentrations of arsenic could have serious impact on human health, such as skin and lung cancer. In the European Union, thus, also in Italy, the arsenic limit in drinking water is 10 μg L?1. Several water remediation treatment technologies are available for arsenic removal. For some processes, the removal efficiencies can be improved after an oxidation step. Most full-scale applications are based on conventional oxidation processes for chemical micropollutant removal. However, if water contains arsenic and refractory organic contaminants, the advanced oxidation processes could be considered. The aim of this work was to investigate the effectiveness of ultraviolet (UV) radiation alone and in combination with hydrogen peroxide for the oxidation of arsenic and terbuthylazine (TBA). The experimental tests were performed in groundwater at the laboratory scale (0.1 mg L?1 As(III) and 10 μg L?1 TBA). Hydrogen peroxide alone (15 mg L?1) was ineffective on both arsenic and TBA oxidation; the 253.7-nm radiation alone did not oxidize arsenic(III), but photolyzed efficiently TBA (52 % removal yield at a UV dose of 1,200 mJ cm?2). The UV/H2O2 advanced oxidation (UV dose 600–2,000 mJ cm?2, 5–15 mg L?1 H2O2) was the most effective process for the oxidation of both arsenic and TBA, with observed oxidation efficiencies of 85 and 94 %, respectively, with 5 mg L?1 H2O2 and a UV dose of 2,000 mJ cm?2.  相似文献   

3.
The prevalence of fluorosis is mainly due to the consumption of more fluoride (F?1) through drinking water, vegetables, and crops. The objective of the study was mapping of F?1 endemic area of Newai Tehsil, Tonk district, Rajasthan, India. For the present study, water, soil (0–45 cm), and vegetation samples were collected from 17 villages. Fluoride concentration in water samples ranged from 0.3 to 9.8 mg/l. Out of 17 villages studied, the amounts of F?1 content of eight villages were found to exceed the permissible limits. Labile F?1 content and total F?1 content in soil samples ranges 11.00–70.05 mg/l and 50.3–179.63 μg g?1, respectively. F?1 content in tree species was found in this order Azadirachta indica 47.3255.76 μg g?1 > Prosopis juliflora 40.16–49.63 μg g?1 > Acacia tortilis 34.39–43.60 μg g?1. While in case of leafy vegetables, F?1 content order was Chenopodium album 54.23–98.42 μg g?1 > Spinacea oleracea 30.41–64.09 μg g?1 > Mentha arvensis 35.4851.97 μg g?1. The order of F?1 content in crops was found as 41.04 μg g?1 Pennisetum glaucum > 13.61 μg g?1 Brassica juncea > 7.98 μg g?1 Triticum sativum in Krishi Vigyan Kendra (KVK) farms. Among vegetation, the leafy vegetables have more F?1 content. From the results, it is suggested that the people of KVK farms should avoid the use of highly F?1 containing water for irrigation and drinking purpose. It has been recommended to the government authority to take serious steps to supply drinking water with low F?1 concentration for the fluorosis affected villages. Further, grow more F?1 hyperaccumulator plants in F?1 endemic areas to lower the F?1 content of the soils.  相似文献   

4.
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking–cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p?=?0.04) from 26 μg L?1 in summer to 6 μg L?1 in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day ?1) and female (2.6 and 1.2 L day?1) participants from summer to winter. Arsenic intake through drinking water decreased (p?=?0.04) in winter (29 μg day?1) than in summer (100 μg day?1), and urinary arsenic concentration decreased (p?=?0.018) in winter (41 μg L?1) than in summer (69 μg L?1). Dietary arsenic intake remained unchanged (p?=?0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.  相似文献   

5.
In Cambodia, groundwater has been contaminated with arsenic, and purification of the water is an urgent issue. From 2010 to 2012, an international collaborative project between Japan and Cambodia for developing arsenic-removing technology from well water was conducted and supported by the foundation of New Energy and Industrial Technology Development Organization, Japan. Quality of well water was surveyed in Kandal, Prey Veng, and Kampong Cham Provinces, and a monitoring trial of the arsenic removal equipment using our patented amorphous iron (hydr)oxide adsorbent was performed. Of the 37 wells surveyed, arsenic concentration of 24 exceeded the Cambodian guideline value (50 μg L?1), and those of 27 exceeded the WHO guideline for drinking water (10 μg L?1). Levels of arsenic were extremely high in some wells (>1,000–6,000 μg L?1), suggesting that arsenic pollution of groundwater is serious in these areas. Based on the survey results, 16 arsenic removal equipments were installed in six schools, three temples, two health centers, four private houses, and one commune office. Over 10 months of monitoring, the average arsenic concentrations of the treated water were between 0 and 10 μg L?1 at four locations, 10–50 μg L?1 at eight locations, and >50 μg L?1 at four locations. The arsenic removal rate ranged in 83.1–99.7 %, with an average of 93.8 %, indicating that the arsenic removal equipment greatly lower the risk of arsenic exposure to the residents. Results of the field trial showed that As concentration of the treated water could be reduced to <10 µg L?1 by managing the As removal equipment properly, suggesting that the amorphous iron (hydr)oxide adsorbent has high adsorbing capacity for As not only in the laboratory environment but also in the field condition. This is one of the succeeding As removal techniques that could reduce As concentration of water below the WHO guideline value for As in situ.  相似文献   

6.
The bioaccumulation and toxicity of arsenate (arsenic (As)(V)) was studied using three cultures of cyanobacterial species—Oscillatoria tenuisa, Anabaena affinis, and Microcystis aeruginosa—that were isolated from a eutrophic reservoir. The As(V) uptake depended on the cyanobacterial species, the growth phase of the cyanobacteria, the duration of exposure, and the initial concentration of As(V). The specific growth rates of the three cultures immediately following the logarithmic phase were 0.033–0.041 L/day when the initial concentration of As(V) was 50 mg/L. These rates were 2.3–3.6 times less than those in the original culture medium without As(V). The rate of intake of As(V) in the logarithmic phase cultures greatly exceeded that in the stationary cultures. The accumulation of As(V) by the three cultures increased rapidly within 1 week from the initial value of 3.23?×?10?2–5.40?×?10?2 to 5.06?×?10?1–6.73?×?10?1 ng/cell in the logarithmic phase. The effective concentrations (EC50) of As(V) for inhibiting the growth of the three cyanobacterial species growth of at 72 h followed the order Oscillatoria tenuisa (3.8 mg/L)?>?A. affinis (2.6 mg/L)?>?M. aeruginosa (1.2 mg/L). The cyanobacterial species that was most sensitive to As(V) was M. aeruginosa. Preliminary results from SEM-map studies suggest most of the As(V) in Microcystis aeruginosa accumulated in the cytoplasm (intercellular), while in O. tenuisa and A. affinis, a large proportion of As(V) bound to the cell wall (extracellular). These differences were understood with reference to the variation among the metabolic properties and morphological characteristics of the cyanobacterial species.  相似文献   

7.
A 2-year study (2010–2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m2/year. In 2011, over 51 % of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86 % of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F? concentrations in the air did not show an unequivocal effect on F? concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500–5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.  相似文献   

8.
Two-year field trials were performed at two experimental sites to investigate dissipation and terminal residues of propamocarb in ginseng root, stem, leaf, and soil by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Mean recoveries ranged from 80.5 to 95.6 % with relative standard deviations (RSDs) of 5.5–9.1 % at fortified levels of 0.01, 0.02, 0.05 and 0.20 mg kg?1. The half-lives of propamocarb were 5.00–11.36 days in root, 5.07–11.46 days in stem, 6.83–11.31 days in leaf and 6.44–8.43 days in soil. The terminal residues of propamocarb were below the maximum residue limits (MRLs) of EU (0.20 mg kg?1) and South Korea (0.50 mg kg?1 in fresh ginseng and 1.0 mg kg?1 in dried ginseng) over 28 days after last spraying at recommended dosage. The results provide a quantitative basis for establishing the MRL and give a suggestion of safe and reasonable use of propamocarb in ginseng.  相似文献   

9.
A geophysical survey was conducted over an industrial belt encompassing 80 functional leather factories in Southern India. These factories discharge untreated effluents which pollute shallow groundwater where electrical conductivity (EC) value had a wide range between 545 and 26,600 μS/cm (mean, 3, 901 μS/cm). The ranges of Na+ and Cl? ions were from 46 to 4,850 mg/L (mean, 348 mg/L) and 25 to 10,390 mg/L (mean, 1,079 mg/L), respectively. Geoelectrical layer parameters of 37 vertical electrical soundings were analyzed to demarcate fresh and saline water zones. However, the analysis not did lead to a unique resolution of saline and fresh waters. It was difficult to assign a definitive value to the aquifer resistivity of any area. Thus, geophysical indicators, namely longitudinal unit conductance (S), transverse unit resistance (T), and average longitudinal resistivity (R s), were calculated for identifying fresh and saline waters. Spatial distributions of S, T, and R s reflected widely varying ranges for the saline and fresh water zones. Further, the empirical relation of formation factor (F) was established from pore-water resistivity and aquifer resistivity for fresh and saline aquifers, which may be used to estimate local EC values from the aquifer resistivity, where well water is not available.  相似文献   

10.
This paper highlights the levels of anions (nitrate, nitrite, sulfate, bromide, chloride, and fluoride) and cations (potassium, sodium, magnesium, and calcium) in selected springs and groundwater sources in the urban-west region of Zanzibar Island. The levels of total dissolved solids (TDS) and sodium adsorption ratio (SAR) were also studied. Thirty water samples were collected in December 2012 from various types of water sources, which included closed hand-dug wells (CHDW), open hand-dug wells (OHDW), springwater (SW), public bore wells (PBW), and bore wells owned by private individuals (BWP), and analyzed after filtration and sometimes dilution. The cations were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). The anions were analyzed by chemically suppressed ion chromatography (IC). The ranges of the levels of the investigated parameters were as follows: Na 13.68–3,656 mg L?1, K 2.66–583 mg L?1, Mg 0.63–131.10 mg L?1, Ca 16.79–189.9 mg L?1, Cl? 8.61–4,340.97 mg L?1, F? 0–1.02 mg L?1, Br? 0–10.88 mg L?1, NO3 ? 0.18–342.4 mg L?1, NO2 ? 0–1.39, SO4 2? 4.43–534.02 mg L?1, TDS 7–6,380 mg L?1, and SAR 0.63–50. Except fluoride, most of the studied parameters in the water samples had concentrations beyond the permissible limits of the World Health Organization (WHO). The elevated concentrations are a result of seepage of contaminated water from on-site septic tanks, pit latrines, landfill leachates, fertilizer applications, and domestic effluents. These results should alert domestic water stakeholders in Zanzibar to the urgent task of initiating a quick mitigation response to control these alarming water risks.  相似文献   

11.
The aim of this study was to evaluate the presence of total and inorganic arsenic in dietary supplements composed of herbal plants and seaweed, and to determine the potential toxicological risk. Total arsenic was determined by dry ashing and hydride generation atomic absorption spectrometry, and inorganic arsenic was determined by acid digestion, solvent extraction, and hydride generation atomic absorption spectrometry. Total and inorganic arsenic in the supplements ranged from 0.07 to 8.31 mg?kg?1 dry weight and from 0.14 to 0.28 mg?kg?1 dry weight, respectively. Daily intake of total arsenic ranged from 0.05 to 12.46 μg?day?1. Inorganic arsenic intake ranged from 0.21 to 0.83 μg?day?1, values that are below the Benchmark Dose Lower Confidence Limit recommended by the Word Health Organization. Therefore, there appears to be a low risk of adverse effects resulting from excess inorganic arsenic intake from these supplements. This is the first study conducted in Mexico that investigates total and inorganic arsenic in dietary supplements. Although the results do not suggest toxicological risk, it is nonetheless important considering the toxicity of inorganic arsenic and the increasing number consumer preferences for dietary supplements. Moreover, it is important to improve and ensure the safety of dietary supplements containing inorganic arsenic.  相似文献   

12.
A novel and robust method for the simultaneous determination of lead, cadmium, arsenic, and nickel in atmospheric particulate matter by multi-element electrothermal atomic absorption spectrometry was developed, using zirconium–iridium coating as permanent modifier (140 μg Zr and 4 μg Ir). After 300 atomization cycles, it was necessary to add 2 μg of Ir. Due to the varying concentrations of Pb in atmospheric particulate matter, lead was monitored at two wavelengths, at the less sensitive line of 261.4 nm for high concentration samples (>20 μg?L?1) or at 283.3 nm for the low concentration samples. Matrix-matched calibration had to be performed for quantitative recoveries (96–102 %). Following this approach, the four elements were determined in atmospheric particulate matter samples from an industrial area near the city of Athens in two different time periods (cold–warm) with limits of detection of 5.5 ng?m?3 for Pb at 261.4 nm and 0.29 ng?m?3 at 283.3 nm, 0.019 ng?m?3 for Cd, 0.14 ng?m?3 for As, and 0.22 ng?m?3 for Ni. Lead, Cd, and As levels were very low, whereas Ni content was at comparable levels with other areas worldwide.  相似文献   

13.
The ubiquitous presence of arsenic (a toxic metalloid) in our environment, particularly in our drinking water, is a serious health hazard of global concern. The present work deals with the assessment of arsenic toxicity through the analysis of induced sperm impairments in sperm head morphology and sperm count in mice at low exposures compared to the magnitude of response at high exposure levels. The animals were exposed to four doses of arsenic, ranging from lowest dose of 0.3 μg kg?1 day?1 (the human reference dose) to higher dose of 30 μg kg?1 day?1 for 15 consecutive days. The epididymal sperms were harvested after one spermatogenic cycle on the 36th day and were scored for the presence of any abnormality in their head morphology as well as changes in their count. Exposure to arsenic significantly induced, in a dose-dependent manner, increases in the frequency of sperms with abnormal head morphology from 5.12 % in control to 9.23 % in lowest dose group and 23.02 % in highest dose group. In contrast, the mean sperm counts in the epididymal wash were decreased from 6.05 million per milliliter in the control to 4.95 million per milliliter in the lowest dose group and 3.07 million in the highest dose group. The analysis of sperm impairments in mice was, therefore, found to be a highly sensitive assay to assess arsenic toxicity, exhibiting a marked male reprotoxic effect of arsenic even at its low exposure levels including the human reference dose.  相似文献   

14.
Persistence of cypermethrin, deltamethrin, profenofos, and triazophos in cauliflower curd was studied, following application of two premix formulations viz: Roket 44EC (profenofos 40 % + cypermethrin 4 %) and Anaconda Plus 36EC (triazophos 35 % + deltamethrin 1 %) at recommended (1.0 L ha?1) and double doses (2.0 L ha?1). In the case of Roket 44EC, residues of cypermethrin dissipated with the half-life values of 1.5–2.1 days, whereas residues of profenofos dissipated with the half-life of 2.9–3.3 days on cauliflower curd. In the case of Anaconda, residues of triazophos and deltamethrin dissipated from curd with the half-life values of 2.6–3.0 and 2.2–2.6 days, respectively. Both the combination mix significantly reduced the aphid population up to 14 days after spray and increased the yield by 155–160 % over control. Anaconda (2.0 L ha?1) treated plots yielded the highest number of marketable curds. Based on risk assessment analysis, safe waiting period of 3 and 5 days has been suggested for Roket 44EC and Anaconda Plus 36EC, respectively, in cauliflower at recommended dose of application.  相似文献   

15.
A colorimetric assay method is described for the environmental detection of 2-mercaptobenzimidazole (MBI) using surface plasmon resonance of gold nanoparticles (AuNPs). Stable and dispersed AuNPs with intensified plasmon resonance were prepared in situ using a simple, rapid, and eco-friendly procedure by applying ascorbic acid as a reducer and cetyltrimethylammonium bromide as a stabilizer. The presence of MBI has a strong effect on the plasmon absorbance of AuNPs, which was employed for the detection of MBI. The calibration curve was linear in the range of 1.0?×?10?6–5.5?×?10?5 mol/L of MBI; the detection limit was 8.4?×?10?7 mol/L. The relative standard deviations for eight replicate measurements of 3.0?×?10?6 and 5?×?10?5 mol/L MBI were 3.9 and 1.4 %, respectively. The method was successfully applied to the determination of MBI in tap, river, sea, and heat exchanger cooling water samples.  相似文献   

16.
Mae Moh is a risky area for arsenic contamination caused by the effluent from biowetland ponds in Mae Moh lignite-fuelled power plant. The objective of this study was to investigate the arsenic concentrations of Mae Moh biowetland ponds and determine the main factors which are important for arsenic phytoremediation in the treatment system. The result revealed that arsenic concentrations in the supernant were in the range of less than 1.0 μg As L???1 to 2.0 μg As L???1 while those in the sediment were in the range of 25–200 μg As kg soil???1. Both values were below the Thailand national standard of 0.25 mg As L???1 for water and 27 mg As kg soil???1 for the soil. Arsenic accumulation in the biomass of 5 aquatic plants at the biowetland ponds ranged from 123.83 to 280.53 mg As kgPlant???1. Regarding the result of regression analysis (R 2?= 0.474 to 0.954), high concentrations of organic matter and other soluble ions as well as high pH value in the sediment could significantly enhance the removal of soluble arsenic in the wetland ponds. From the regression equation of accumulated arsenic concentration in each aquatic plant, Eichhornia crassipes (Mart.) Solms. (R 2?= 0.954), Ipomoea aquatica Forsk. (R 2?= 0.850), and Typha angustifolia (L.) (R 2?= 0.841) were found to be preferable arsenic removers for wastewater treatment pond in the condition of low Eh value and high content of solid phase EC and phosphorus. On the other hand, Canna glauca (L.) (R 2?= 0.749) appeared to be favorable arsenic accumulator for the treatment pond in the condition of high Eh value and high concentration of soluble EC.  相似文献   

17.
We assessed the effects of seasonal dynamics on the physico-chemical qualities and heavy metals concentrations of the Umgeni and Umdloti Rivers in Durban, South Africa. Water samples were taken from nine different sampling points and analysed for the following parameters; temperature, pH, turbidity, electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), phosphate (PO4 2?), nitrate (NO3 2?), ammonium (NH4 +), sulphate (SO4 2?), lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), aluminium (Al3+), and copper (Cu2+) using standard methods. The data showed variations it terms of the seasonal fluctuations and sampling regime as follows: temperature 12–26.5 °C; pH 5.96–8.45; turbidity 0.53–18.8 NTU; EC 15.8–5180 mS m?1; BOD5 0.60–7.32 mg L?1; COD 10.5–72.9 mg L?1; PO4 2??<?500–2,460 μg L?1; NO3 2? <0.05–4.21 mg L?1; NH4 +?<?0.5–1.22 mg L?1; SO4 2? 3.90–2,762 mg L?1; Pb2+ 0.023–0.135 mg L?1; Hg2+ 0.0122–0.1231 mg L?1 Cd2+ 0.068–0.416 mg L?1; Al3+ 0.037–1.875 mg L?1, and Cu2+0.006–0.144 mg L?1. The concentrations of most of the investigated parameters exceeded the recommended limit of the South African Guidelines and World Health Organization tolerance limits for freshwater quality. We conclude that these water bodies are potentially hazardous to public health and this highlights the need for implementation of improved management strategies of these river catchments for continued sustainability.  相似文献   

18.
Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3–2.3 × 105 cell ml?1) was always higher than at Port Klang (0.3–7.1 × 104 cell ml?1) (p < 0.001). μ ranged up to 0.98 day?1 (0.51 ± 0.29 day?1), while g ranged from 0.02 to 0.31 day?1 (0.15 ± 0.07 day?1) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day?1 (0.29–0.82 day?1) and 0.31 ± 0.14 day?1 (0.13–0.63 day?1), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi ? 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.  相似文献   

19.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

20.
The developed method is based on cold-induced aggregation microextraction of Se(IV) using the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as an extractant followed by spectrophotometry determination. The extraction of Se(IV) was performed in the presence of dithizone as the complexing agent. In this method, a very small amount of 1-butyl-3-methylimidazolium hexafluorophosphate was added to the sample solution containing Se-dithizone complex. Then, the solution was kept in a thermostated bath at 50 °C for 4 min. Subsequently, the solution was cooled in an ice bath and a cloudy solution was formed. After centrifuging, the extractant phase was analyzed using a spectrophotometric detection method. Some important parameters that might affect the extraction efficiency were optimized (HCl, 0.6 mol L?1; dithizone, 4.0?×?10?6 mol L?1; ionic liquid, 100 μL). Under the optimum conditions, good linear relationship, sensitivity, and reproducibility were obtained. The limit of detection (LOD) (3Sb/m) was 1.5 μg L?1, and the relative standard deviation (RSD) was 1.2 % for 30 μg L?1 of Se(IV). The linear range was obtained in the range of 5–60 μg L?1. It was satisfactory to analyze rice and various water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号