首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   

2.
The cyclic volatile methylsiloxane, decamethylcyclopentasiloxane (D5) is used in a large variety of personal care products. Based on the physical–chemical properties of D5, it is likely that losses due to volatilisation may strongly influence the levels entering the aquatic environment. The aim of this study was to quantify the amount of D5 in waste wash water, after typical application and use in a range of deodorant and anti-perspirant (AP) products. Results implied significant losses after a 24 h period (>99.9%), and suggest that the use of D5 in leave-on products, such as deodorants/AP is not likely to contribute a significant down-the-drain emission source. An illustrative example is presented, based on data reporting the use of D5 in a range of personal care products (both wash-off and leave-on), which suggests that the contribution of D5 used in wash-off products to the aquatic environment may be considerably more significant. Limitations associated with our understanding of the actual D5 inclusion levels in the products, the market share of the products containing D5, and the variability of consumer habits, are identified as data gaps that need to be addressed in order to better refine down-the-drain emission estimates.  相似文献   

3.
In the summer of 1998, the air quality (indicators: CO, NO, NO2, O3) above the water surface of the Lake Balderey (Essen, Ruhr area, North Rhine-Westphalia, Germany), an artificial lake used for recreation purposes, was measured using the Fourier transform infrared spectroscopy (FTIR) and differential optical absorption spectroscopy (DOAS) remote measurement methods. The lake, with an area of 3 km2 was created by damming the Ruhr and is surrounded by higher ground. In calm, bright weather conditions, this location results in a low-exchange situation (formation of temperature inversions, cold air dynamics) with a sustained impact on pollutant concentrations over the lake. The results of trace substance measurements (1/2 h mean values) were compared with values from comparison stations (suburban, high traffic and forest) located outside the area of the lake. In general, it was found that mean CO and NO concentrations over the lake were very low (0.3 ppm and 7.5 ppb, respectively). NO2 values (15 ppb) were some 3.5 times higher than those recorded at the forest station and O3 values, at 27 ppb, almost reached the same level as at the forest station (30 ppb). Mass flow densities as a function of wind direction, diurnal courses, differences between weekdays and weekends and comparisons with air quality standards are presented for the lake station.  相似文献   

4.
Samples of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) were collected at three sampling stations (Xiaomai Island, Laohutan, and Zhangzi Island) in the north Yellow Sea, China during November 2008 and September 2009 to study their atmospheric transport potential and the gas/particle distributions. The composition of PAHs was dominated by gaseous compounds. The percentages of the particle-phase PAHs to the total concentrations were found to be higher during the heating period than the non-heating period. The ratios of naphthalene and acenaphthene to phenanthrene, chrysene and dibenzo(a,h)anthracene showed an increasing trend from Xiaomai Island to Zhangzi Island, which can be called as the local atmospheric distillation of PAHs. Gas/particle partitioning coefficients (K p) and their relationship with the sub-cooled liquid vapor pressures (pºL) of PAHs were investigated. The regressions of logK p versus logpºL gave significant correlations for all samples of the three sites with r 2 values in the range 0.56–0.66 (p?<?0.01). Both Junge–Pankow adsorption model and octanol–air partition coefficient absorption model tended to underestimate the sorption for most PAHs, but the absorption model appeared to be more suitable for predicting the particle fraction of PAHs than the Junge–Pankow model.  相似文献   

5.
Monitoring of cyclic volatile methylsiloxanes (cVMS) carried out at Anglian Water’s Broadholme sewage treatment plant (STP) is described. The method deployed used headspace gas chromatography/mass spectrometry (HS-GC/MS) and the addition of isotopically labelled cVMS to correct for partitioning in samples containing high levels of particulate and dissolved organic carbon. The method was capable of measuring cVMS in raw sewage samples, with recoveries of 80%, 85% and 71% respectively, for D4, D5 and D6. The limit of quantification was 0.2 μg L−1 for all three substances. Recoveries close to 100% were observed for all cVMS spiked into treated effluent (LOQ = 0.01 μg L−1). Despite the volatile nature of cVMS and its ubiquitous presence in the ambient atmosphere, the methods deployed showed excellent recoveries, reproducibility and quantification limits. A distinct diurnal variation in cVMS concentration, probably linked with the use of personal care products was observed for raw sewage but not in treated sewage effluent. The estimated per capita consumption of D5 (∼2.7 mg cap−1 d−1) derived for the population served by this plant was significantly lower than that derived in the Environment Agency (UK) risk assessment (11.6 mg cap−1 d−1). The cVMS were highly removed during sewage treatment with efficiencies greater than 98%. The methods and findings of this pilot study can be used as the basis for future studies on the fate of cVMS substances in STPs.  相似文献   

6.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   

7.
Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg−1), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg−1), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg−1) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH)6]2, controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content.  相似文献   

8.
We present measurements of several trace gases made at a subtropical coastal site in Hong Kong in October and November 1997. The gases include O3, CO, SO2, and NOx. The surface measurement data are compared with those from an aircraft study [Kok et al. J. Geophys. Res. 102 (D15) (1997) 19043–19057], and a subset of the latter is used to show the vertical distribution of the trace gases in the boundary layer. During the study period, averaged concentrations at the surface site for O3, CO, NOx, and SO2 were 50, 298, 2.75, and 1.65 ppbv, respectively. Their atmospheric abundance and diurnal pattern are similar to those found in the “polluted” rural areas in North America. The measured trace gases are fairly well mixed in the coastal boundary layer in the warm South China region. Large variability is indicated from the data. Examination of 10-day, isentropic back trajectories shows that the measured trace gases are influenced by maritime air masses, outflow of pollution-laden continental air, and the mixing of the two. The trajectories capture the contrasting chemical features of the large-scale air masses impacting on the study area. CO, NOx and SO2 all show higher concentrations in the strong outflow of continental air, as expected, than those in the marine category. Compared with previously reported values for the western Pacific, the much higher levels found in the marine trajectories in our study suggest the impacts of regional and/or sub-regional emissions on the measured trace gases at the study site. The presence of abundant O3 and other chemically active trace gases in the autumn season, coupled with high solar radiation and warm weather, suggests that the South China Sea is a photochemically active region important for studying the chemical transformation of pollutants emitted from the Asian continent.  相似文献   

9.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

10.
Twenty-one samples were collected during the dry season (26 January–28 February 2004) at 12 sites in and around Addis Ababa, Ethiopia and analyzed for particulate matter with aerodynamic diameter <10 μm (PM10) mass and composition. Teflon-membrane filters were analyzed for PM10 mass and concentrations of 40 elements. Quartz-fiber filters were analyzed for chloride, sulfate, nitrate, and ammonium ions as well as elemental carbon (EC) and organic carbon (OC) content. Measured 24-h PM10 mass concentrations were <100 and 40 μg m−3 at urban and suburban sites, respectively. PM10 lead concentrations were <0.1 μg m−3 for all samples collected, an important finding because the government of Ethiopia had stopped the distribution of leaded gasoline a few months prior to this study. Mass concentrations reconstructed from chemical composition indicated that 34–66% of the PM10 mass was due to geologically derived material, probably owing to the widespread presence of unpaved roads and road shoulders. At urban sites, EC and OC compounds contributed between 31% and 60% of the measured PM10 while at suburban sites carbon compounds contributed between 24% and 26%. Secondary sulfate aerosols were responsible for <10% of the reconstructed mass in urban areas but as much as 15% in suburban sites, where PM10 mass concentrations were lower. Non-volatile particulate nitrate, a lower limit for atmospheric nitrate, constituted <5% and 7% of PM10 at the urban and suburban sites, respectively. At seven of the 12 sites, real-time PM10 mass, real-time carbon monoxide (CO), and instantaneous ozone (O3) concentrations were measured with portable nephelometers, electrochemical analyzers, and indicator test sticks, respectively. Both PM10 and CO concentrations exhibited daily maxima around 7:00 and secondary peaks in the late afternoon and evening, suggesting that those pollutants were emitted during periods associated with motor-vehicle traffic, food preparation, and heating of homes. The morning concentration maxima were likely accentuated by stable atmospheric conditions associated with overnight surface temperature inversions. Ozone concentrations were measured near mid-day on filter sample collection days and were in all cases <45 parts per billion.  相似文献   

11.
In this paper, the continuous (1994–2001) and discrete air sample (1991–2001) measurements of atmospheric CH4 from the Waliguan Baseline Observatory located in western China (36°17′N, 100°54′E, 3816 m asl) are presented and characterized. The CH4 time series show large episodic events on the order of 100 ppb throughout the year. During spring, a diurnal cycle with average amplitude of 7 ppb and a morning maximum and late afternoon minimum is observed. In winter, a diurnal cycle with average amplitude of 14 ppb is observed with an afternoon maximum and morning minimum. Unlike most terrestrial observational sites, no obvious diurnal patterns are present during the summer or autumn. A background data selection procedure was developed based on local horizontal and vertical winds. A selected hourly data set representative of “baseline” conditions was derived with approximately 50% of the valid hourly data. The range of CH4 mixing ratios, annual means, annual increases and mean annual cycle at Waliguan during the 1992–2001 were derived from discrete and continuous data representative of “baseline” conditions and compared to air samples collected at other Northern Hemisphere sites. The range of CH4 monthly means of 1746–1822 ppb, average annual means of 1786.7±10.8 ppb and mean annual increase of 4.5±4.2 ppb yr−1 at Waliguan were inline with measurements from sites located between 30° and 60°N. There were variations observed in the CH4 annual increase patterns at Waliguan that were slightly different from the global pattern. The mean CH4 annual cycle at Waliguan shows an unusual pattern of two gentle peaks in summer and February along with two small valleys in early winter and spring and a mean peak-to-peak amplitude of 11 ppb, much smaller than amplitudes observed at most other mid- and high-northern latitude sites. The Waliguan CH4 data are strongly influenced by continental Asian CH4 emissions and provide key information for global atmospheric CH4 models.  相似文献   

12.
Based on hourly measurements of NOx NO2 and O3 and meteorological data, an ordinary least squares (OLS) model and a first-order autocorrelation (AR) model were developed to analyse the regression and prediction of NOx and NO2 concentrations in London. Primary emissions and wind speed are the most important factors influencing NOx concentrations; in addition to these two, reaction of NO with O3 is also a major factor influencing NO2 concentrations. The AR model resulted in high correlation coefficients (R > 0.95) for the NOx and NO2 regression based on a whole year's data, and is capable of predicting NO2 (R = 0.83) and NOx (R = 0.65) concentrations when the explanatory variables were available. The analysis of the structure of regression models by Principal Component Analysis (PCA) indicates that the regression models are stable. The results of the OLS model indicate that there was an exceptional NO2 source, other than primary emission and reaction of NO with O3, in the air pollution episode in London in December 1991.  相似文献   

13.
Peroxyacetyl nitrate (PAN) in air has been well known as the indicator of photochemical smog due to its frequent occurrences in Seoul metropolitan area. This study was implemented to assess the distribution characteristics of atmospheric PAN in association with relevant parameters measured concurrently. During a full year period in 2011, PAN was continuously measured at hourly intervals at two monitoring sites, Gwang Jin (GJ) and Gang Seo (GS) in the megacity of Seoul, South Korea. The annual mean concentrations of PAN during the study period were 0.64 ± 0.49 and 0.57 ± 0.46 ppb, respectively. The seasonal trends of PAN generally exhibited dual peaks in both early spring and fall, regardless of sites. Their diurnal trends were fairly comparable to each other. There was a slight time lag (e.g., 1 h) in the peak occurrence pattern between O3 and PAN, as the latter trended to peak after the maximum UV irradiance period (16:00 (GJ) and 17:00 (GS)). The concentrations of PAN generally exhibited strong correlations with particulates. The results of this study suggest that PAN concentrations were affected sensitively by atmospheric stability, the wet deposition of NO2, wind direction, and other factors.  相似文献   

14.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

15.
We examined root hydraulic conductivity (Lp) responses of one-year-old seedlings of four conifers to the combined effects of elevated CO2 and inorganic nitrogen (N) sources. We found marked interspecific differences in Lp responses to high CO2 ranging from a 37% increase in P. abies to a 27% decrease in P. menziesii, but these effects depended on N source. The results indicate that CO2 effects on root water transport may be coupled to leaf area responses under nitrate (NO3), but not ammonium (NH4+) dominated soils. To our knowledge, this is the first study that highlights the role of inorganic N source and species identity as critical factors that determine plant hydraulic responses to rising atmospheric CO2 levels. The results have important implications for understanding root biology in a changing climate and for models designed to predict feedbacks between rising atmospheric CO2, N deposition, and ecohydrology.  相似文献   

16.
Hourly average concentrations of PM10 and PM2.5 have been measured simultaneously at a site within Birmingham U.K. between October 1994 and October 1995. Comparison of PM10 and NOx data with two other sites in the same city shows comparable summer and winter mean concentrations and highly significant inter-site correlations for both hourly and daily mean data. Over a four-month period samples were also collected for chemical analysis of sulphate, nitrate, chloride, ammonium and elemental and organic carbon. Analysis of the data indicates a marked difference between summer and winter periods. In the winter months PM2.5 comprises about 80% of PM10 and is strongly correlated with NOx indicating the importance of road traffic as a source. In the summer months, coarse particles (PM10−PM2.5) account for almost 50% of PM10 and the influence of resuspended surface dusts and soils and of secondary particulate matter is evident. The chemical analysis data are also consistent with three sources dominating the PM10 composition: vehicle exhaust emissions, secondary ammonium salts and resuspended surface dusts. Coarse particles from resuspension showed a positive dependence on windspeed, whilst elemental carbon derived from road traffic exhibited a negative dependence.  相似文献   

17.
Abstract

The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998–2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

18.
The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO2 and/or O3 in relation to stomatal conductance (gs), water potential, intercellular [CO2], leaf temperature and vapour-pressure difference between leaf and air (VPDL) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased gs and decreased Rubisco carboxylation efficiency, Vcmax. As a result of increasing VPDL, gs decreased. Elevated [CO2] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO2 treatment.The positive impact of CO2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases.  相似文献   

19.
The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients (jNO2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS’97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO2 were obtained for 14 days during SCOS’97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17–36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20–25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.  相似文献   

20.
重庆市春季大气颗粒物浓度的对比监测分析   总被引:2,自引:1,他引:1  
通过2012年春季在重庆大气超级站进行的PM10和PM2.5手工采样与自动仪器的对比监测,分析了自动监测与手工监测的一致性及造成偏差的原因,并对PM2.5与PM10浓度的比值关系进行了分析。结果表明:MP101M型颗粒物自动监测仪用于监测PM10时系统性误差偏高,仪器初始精密度存在负偏差;用于监测PM2.5时系统性误差在允许范围之内,仪器初始精密度存在较大负偏差;PM10和PM2.5的手工采样和自动仪器监测值之变化趋势具有非常高的一致性;PM2.5与PM10浓度比值范围在56.5%~90.4%,平均比值为(73.8±7.4)%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号