首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present paper aims at presenting a kinetic model that is supposed to result in the decomposition of methylparaben in completely mixed batch reactor (CMBR) using the UV/H2O2 process. The proposed model incorporates photochemical, chemical reactions and their constant rates to formulate the overall kinetic rate expressions which are integrated into MATLAB. Thus, the changes in pH values during the process of oxidation are taken into consideration. In addition, the effects of hydrogen peroxide (HP) dosage, as well as the concentration of hydroxyl radicals, are examined. Accordingly, the pseudo-first-order rate constant, its variation as functions of HP concentration, incident UV-light intensity and the limitations of the adopted approach are discussed. In line with that, the authors provided evidence of the validity of the kinetic model through the exposure of previous experimental studies as reported in the literature review then through the evidence of the present experimental data.  相似文献   

2.
Fenton氧化法降解丙烯酸废水的研究   总被引:3,自引:1,他引:2  
高超  乐清华  冯杰 《环境工程学报》2009,3(7):1279-1283
利用废铁屑与H2O2形成的Fenton氧化反应来降解工业丙烯酸废水中的丙烯酸。在间歇反应器中,系统地考察了反应时间、H2O2浓度、液固比(废水质量∶固体质量)和反应温度对丙烯酸的降解率的影响,优选了工艺条件。在连续固定床反应器中进行了对比实验,以考察固液接触状态的影响及系统的稳定性。结果表明,废铁屑与H2O2构成的Fenton体系能有效地降解废水中的丙烯酸。在间歇工况下,适宜的条件为,液固比40∶1,温度20~25℃,H2O2浓度800 mg/L ,反应时间35 min,在此条件下,丙烯酸的降解率可达到95%以上。对比实验表明,固液接触状态对降解效果的影响不大,铁屑的性能稳定,在连续93 h的稳定性实验中,丙烯酸的降解率保持在90%左右。  相似文献   

3.
采用响应面法对UV/H2O2光氧化法处理高浓度LAS废水的工艺参数进行了系统研究。根据Box-Behnken Design(BBD)设计原理,以初始pH与H2O2投加量、反应时间和温度为主要影响因素,设计4因素3水平共29个实验点的实验方案,并建立了二次响应面拟合模型。方差分析表明,初始pH与H2O2投加量、反应时间和温度以及初始pH和H2O2投加量、H2O2投加量和温度之间的交互作用,对实验结果具有显著性影响。实验得到的光氧化高浓度LAS废水最佳工艺条件,pH为4.0,H2O2投加量为40 mmol/L,反应时间为90 min,温度为25℃,在此条件下,LAS的平均去除率为98.1%。  相似文献   

4.
In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.  相似文献   

5.
采用基于中心复合设计(CCD)的响应面分析方法,以H2O2为氧化剂,对超临界水氧化降解喹啉废水的影响因素进行了探讨和分析,考察了温度、压力、停留时间、氧化剂过量倍数对废水降解的影响。在温度380~460℃,压力24~28 MPa,停留时间20~60 s,氧化剂过量倍数0%~400%的条件下分析了TOC去除率的变化。由Design-Expert7.0软件设计分析了实验数据,得到一个二次响应曲面模型,通过实验对模型进行了验证,结果表明,响应面模型的预测值与实验值吻合较好。在最佳操作点温度441℃,压力25 MPa,停留时间60 s,氧化剂过量2.48倍的条件下,TOC去除率达到最高值(95.19%)。  相似文献   

6.
Liu X  Garoma T  Chen Z  Wang L  Wu Y 《Chemosphere》2012,87(10):1134-1140
The rate constants of sulfamethoxazole (SMX) degradation by ozonation and UV254 radiation were investigated under various parameters including influent ozone gas concentration, initial SMX concentration, UV light intensity, ionic strength, water quality in terms of varying anions (bicarbonate, sulfate and nitrate), humic acid (HA) and pH. The results indicated that the removal of SMX by ozonation and UV254 radiation fitted well to a pseudo first-order kinetic model and the rate constants were in the range of (0.9-9.8) × 10−3 and (1.7-18.9) × 10−3 s−1, respectively. The second-order rate constants of SMX with ozone (kO3), under varying operational parameters, were also determined and varied in the range of (0.60-3.38) ± 0.13 × 105 M−1 s−1. In addition, SMX degradation through UV pretreatment followed by ozonation in the presence of HA was proved to be an effective method which can remove SMX with a low ozone dose. The results suggested that ozonation of SMX was more affected by concentration of influent ozone gas, alkalinity, and HA, while incident UV light intensity, pH, and HA were the dominant factors influencing UV degradation of SMX.  相似文献   

7.
为了有效地改善养猪场污水的质量,以H2O2为药剂,对污水进行了水浴加热和超声波辅助的对比实验,考察了超声波发生器输出端电流强度、处理时间、H2O2用量对污水的COD、氨气及颜色的影响,并进行正交实验优化。结果表明,超声波协同H2O2处理养殖污水是一种切实可行的方法,超声波协同H2O2处理污水的最佳工艺条件:电流0.7 A、处理时间2 min、H2O2用量3%,在此条件下降低COD量可达95%以上,氨氮的含量可降至14~15 mg/L,氨臭味大大得到了改善,并将原污水由黑色变为浅黄色。  相似文献   

8.
The H2O2/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M1, M2, and M3 following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H2O2. Subsamples of M1, M2, and M3 were then used to create samples M1,E, M2,E and M3,E in which the H2O2 had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M1,E, which was collected early in the photodegradation process, caused 52% inhibition, while M3,E, which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M2, M3, and in M1,E, M2,E and M3,E. The lowest percentages of enzymatic inhibition were observed in samples without removal of H2O2: 13.96% (AChE) and 16% (BChE) for M2, and 24.12% (AChE) and 13.83% (BChE) for M3. These results show the efficiency of the H2O2/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M2 (11 ± 1 mg a.e. L?1 glyphosate and 11 ± 1 mg L?1 H2O2) could be used as a final point for glyphosate treatment with the H2O2/UV process.  相似文献   

9.
Background, aim, and scope  The pulp and paper industry is the sixth largest polluter discharging a variety of gaseous, liquid, and solid wastes into the environment. Effluents from bleached Kraft mill effluents (BKME) are polluting waters to a great extent These effluents cause considerable damage to the receiving waters if discharged untreated since they have high levels of biological oxygen demand (BOD), chemical oxygen demand (COD), chlorinated compounds (measured as AOX), suspended solids (mainly fibers), fatty acids, tannins, resin acids, lignin and its derivatives, sulfur and sulfur compounds, etc. This study aimed to remove adsorbed organic halogen (AOX), total nitrogen, and lignin-degrading products in the wastewater (4,500 m3/h) from the paper mill in the pulp and paper industry, which is discharged to sea from a plant located in western Turkey. Materials and methods  The photocatalytic degradation of AOX, total nitrogen, and chlorinated lignin in BKME have been investigated in different parameters, such as time, H2O2 and TiO2 concentration. In addition, for investigating the effect of chlorine on the removal of lignin, pure lignin solution was prepared in equal amounts to chlorinated lignin degradation products found in BKME. The same experiments were conducted for this solution. Experiments were carried out in photocatalytic reactor made of Pyrex glass. The mercury lamp was used as a radiation source. All irradiation was carried out under constant stirring. The existence of dissolved O2 is an important factor which increases the photocatalytic degradation. Hence, we used an air pump for the aeration of the wastewater solutions. The temperature of the wastewater was controlled and adjusted to 25°C by thermostat pump in conjunction with a cooler. At the end of all experiments, AOX, total nitrogen and lignin concentrations were analyzed according to standard methods. All experiments were performed in duplicate and average values were used. Results and discussion  When the effect of H2O2 and time were investigated, it was observed that the AOX concentration increased from 3.0 to 11.0 mg/L by only UV. However, when H2O2 was added, AOX concentration decreased from approximately 3.0 to 0.0 mg/L. The optimal conditions for the removal of AOX appear to be an initial H2O2 concentration of 20.0 mL/L and reaction time of 50 min. In addition, at the same experiment conditions, it was seen that the total nitrogen concentration decreased from 23.0 to 15.0 mg/L by only UV and by increasing H2O2 concentration, the concentration of 20.0 mL/L H2O2 appears to be optimal (9.0 mg/L). The AOX, total nitrogen and lignin degradation products and pure lignin go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. The kinetics for the degradation of AOX, total nitrogen and lignin degradation products followed a pseudo-first order law with respect to the products, and the degradation rates (min−1) for the UV/TiO2/H2O2 system were higher than that of the corresponding values for the UV/H2O2 system. Conclusions  The AOX, total nitrogen and lignin concentration go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. It was found that the UV/TiO2/H2O2 system has proved capable of the degradation of total nitrogen as well as chlorinated and degraded lignin in BKME. Recommendations and perspectives  The photocatalytic process can be considered a suitable alternative for the remove of some compounds from the BKME. Nevertheless, further studies should be carried out to confirm the practical feasibility of BKME. Another result obtained from the study is that pre-purification carried out with UV/TiO2/H2O2 photocatalytic process may constitute an important step for further purification processes such as adsorption, membrane processes, etc.  相似文献   

10.
采用O3、H2O2/O3和UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40 min,溶液pH 8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

11.
Wang W  Qu Y  Yang B  Liu X  Su W 《Chemosphere》2012,86(4):376-382
Pyrite is a common mineral at many mining sites. In this study, the mineral pyrite was studied as a Fenton-like reagent for environmental concerns. We selected lactate as a model target molecule to evaluate the Fenton-like catalytic efficiency of pyrite upon organic oxidation. A complete set of control experiments in both aerobic and anaerobic atmospheres unequivocally established that the pyrite in aqueous solution could spontaneously in situ generate OH and H2O2, serving as a Fenton-like reagent to catalyze the oxidation of lactate to pyruvate with no need for additional H2O2. We called it the pyrite-only Fenton-like (PF) reagent. Monitoring concentration changes of lactate and pyruvate with the time indicated that the pyrite mediated the favorable pyruvate formation at pH 4.5, 60 °C, under air atmosphere. The PF reaction could be stimulated by visible light illumination. Under the optimum conditions, up to 50% of lactate was degraded within 10 d. The results suggest that pyrite and its Fenton-like processes may be potentially practical in wastewater treatment.  相似文献   

12.
考察用不同的氧化剂降解1,2,4-三氯苯(TCB),3种不同方法对TCB的去除效果存在较大差别,其处理效果依次为:H2O2O3O3/H2O2。采用响应面法优化O3/H2O2工艺降解TCB的条件。结果表明,TCB初始浓度和H2O2投加量对TCB去除效果影响较大。TCB的降解符合准一级反应动力学规律,最佳降解条件为TCB初始浓度0.3 mg/L,pH=8.13,H2O2投加量0.40 mmol/L,O3转化率75%。在此条件下,TCB的平均去除率为91.5%,与预测值93.1%吻合度较高。  相似文献   

13.
含聚丙烯酰胺采油污水的有效处理是近年来困扰油田三次采油生产的一个难题。研究采用移动床生物膜技术与O3/UV/H2O2高级氧化技术的组合方法来处理含聚丙烯酰胺采油污水。实验结果表明,移动床生物膜技术可以有效去除污水中的石油类有机物,但对聚丙烯酰胺几乎无效果。O3/UV/H2O2高级氧化技术可以降解污水中的聚丙烯酰胺。组合方法处理后的含聚丙烯酰胺采油污水水质可以达到污水综合排放标准中的一级要求。  相似文献   

14.
采用O3/H2O2高级氧化工艺处理炼油厂反渗透(RO)浓水,用溶气泵加压溶气并产生微气泡强化传质,确定装置运行条件,考察气体中臭氧浓度、H2O2/O3初始摩尔比、pH和温度对O3/H2O2处理RO浓水效果的影响,并对RO浓水处理效能进行研究。结果表明,随着气体中臭氧浓度的增加,COD的去除率基本呈线性增加;加入适当量H2O2能提高臭氧氧化RO浓水的效果,H2O2/O3初始摩尔比在0~0.8范围内,COD的去除率先增加后下降,H2O2/O3初始摩尔比为0.5时COD去除率最大;pH从6.84增加到9.01,COD去除率逐渐增大,pH为10.03时COD去除率反而降低;在14~28℃范围内,温度低时,升高温度COD去除率增加较大,温度较高时,升高温度对COD去除率的影响较小。为考察该工艺的稳定性,在H2O2/O3初始摩尔比为0.5、溶液pH为8~9、臭氧浓度为80~100 mg/L、温度为10~28℃条件下,对COD为90~140 mg/L的RO浓水氧化处理4~10 h,出水COD维持在39.9~49.9 mg/L,达到《城镇污水处理厂污染物排放标准(GB 18918-2002)》中的一级A标准;去除1 g COD消耗O3 1.4~3.3 g,消耗O3与H2O2的总氧量为2.2~4.4 g。  相似文献   

15.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   

16.
采用O3/H2O2法对嘧啶废水进行处理,考察了不同反应条件对嘧啶和COD去除率的影响,并对O3/H2O2降解嘧啶的反应机制和动力学进行了初步探讨.实验结果表明,在pH值为11,反应时间为70 min,O3流量为4g/h,H2O2投加量为50 mmol/L的条件下,废水的嘧啶和COD的去除率分别达到86.46%和74.9...  相似文献   

17.
Chen HW  Chen CY  Wang GS 《Chemosphere》2011,85(4):591-597
The presence of various organic contaminants in water sources is of concern due to their direct threats to human health and potential to react with disinfectants to form carcinogenic byproducts including trihalomethanes, haloacetic acids and nitrosamines in finished water. This study applied both medium-pressure and low-pressure ultraviolet light coupled with hydrogen peroxide (UV/H2O2) to evaluate its efficacy for degradation of selected nitrogenous organic compounds and corresponding disinfection byproduct (DBP) formation. Six organic compounds were chosen as target precursors based on their nitrogen contents and molecular structures. The results showed that higher oxidation capacity resulted in better reduction of organic matters and DBP formation potentials (DBPFPs). However, insufficient contact time and oxidant doses could lead to a rise of DBPFPs in the early stages of UV/H2O2 reactions. A greater percentage removal was achieved for organic carbon than organic nitrogen after UV/H2O2 treatment, especially for compounds with complicated structure such as diltiazem. During the UV/H2O2 treatment, the intermediate products include tertiary amine, dimethyl amine (DMA) or DMA-like structures, which are N-nitrosodimethylamine (NDMA) precursors after chlorination or chloramination. Furthermore, it was observed that using dissolved organic nitrogen and DMA to predict NDMAFP could lead to biased conclusions because of the complex nature of nitrogenous matters in aqueous environments.  相似文献   

18.
Absorption spectroscopy, which is widely used for concentration measurements of tropospheric and stratospheric compounds, requires precise values of the absorption cross-sections of the measured species. NO2, O2 and its collision-induced absorption spectrum, and H2O absorption cross-sections have been measured at temperature and pressure conditions prevailing in the Earth’s atmosphere. Corrections to the generally accepted analysis procedures used to resolve the convolution problem are also proposed.  相似文献   

19.
Fenton试剂法降解餐厨垃圾异味   总被引:1,自引:0,他引:1  
自行设计Fenton试剂法降解还原性气体异味的反应器,研究了Fenton试剂法处理餐厨垃圾异味主要成分(苯、乙酸乙酯、苯乙烯)的降解效果。以苯为典型代表物,优化得出该实验的最佳反应条件为:pH=3,FeSO4.7H2O投加量为1 g/L液相,30%H2O2投加量为10 mL/L液相,紫外光源辅助。结果证明,Fenton试剂法处理单一异味气体的效果较理想,在前180 min内能达到90%以上,该法在处理气态异味污染物方面具有广阔的应用前景。  相似文献   

20.
INTENTION, GOAL, SCOPE, BACKGROUND: Advanced oxidation processes are powerful methods which are capable of transforming refractory, nonbiodegradable and/or toxic organic compounds into harmless end products such as carbon dioxide and water. However, one commen problem of all advanced oxidation processes is the high demand of electrical energy for ultraviolet lamps, which causes high operational costs. Minimization of the required irradiation time, and therefore the energy consumption, by optimization of other reaction conditions such as catalyst-oxidant type and concentration, pH, temperature, pollutant/oxidant ratio etc., therefore continues to gain importance. OBJECTIVE: The main objective of this study was the minimization of the required irradiation time through optimization of the use of a newly patented catalyst, ferrioxalate, and also to compare the performance of this catalyst with the performance of other AOPs. METHODS: Oxidation of 4-chlorophenol by photo-Fenton process using potassium ferrioxalate as a mediator was studied in a lab scale photoreactor. The influence of parameters such as hydrogen peroxide and ferrioxalate concentrations, initial pH, power-output, oxalate/iron ratio and different iron sources was evaluated. An upflow photoreactor equipped with a 1000 Watt high-pressure mercury vapour lamp and operating in a recirculation mode was used during photodegradation experiments. The extent of the reduction of 4-chlorophenol, Total Organic Carbon and Chemical Oxygen Demand was used to evaluate the photodegradation reaction. RESULTS AND DISCUSSION: The optimum pH range observed was found to be 2.7-3. The efficiency of 4-chlorophenol oxidation increased with increasing concentrations of hydrogen peroxide and ferrioxalate, reaching a plateau after the addition of 10 and 0.072 mM of those reagents, respectively. Using an Oxalate/iron ratio of 12 was 18% less efficient than using a ratio of 3:1. The efficiency increased with increasing radiation power. However, this increase was not linear. The UV/ferrioxalate/H2O2 process, by which complete mineralization of 100 mg l(-1) 4-chlorophenol was achieved in 20 min of total reaction time, was the most efficient process among the alternatives applied. CONCLUSIONS: The use of ferrioxalate as the catalyst was found to be more efficient than the use of Fe(II) and Fe(III) iron species. It was possible to completely mineralize 4-chlorophenol. RECOMMENDATION AND OUTLOOK: The results of this study demonstrate that the ferrioxalate-mediated degradation of 4-chlorophenol requires less irradiation times than other advanced oxidation processes. There are mainly 19 phenol isomers and other toxic and nonbiodegradable organic compounds. We recommend that similar studies should be performed on many such compounds in order to attain a clear understanding of the performance of this catalyst. Because of its light sensitivity, this catalyst should be used immediately after its preparation. The use of low pressure mercury vapour lamps in this process should also be considered, since low power outputs may be enough for the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号