首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT50 values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.  相似文献   

2.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT50 values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, 14C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 ± 0.002% and 0.005 ± 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

3.
Simple high-throughput procedures were developed for the direct analysis of glyphosate [N-(phosphonomethyl)glycine] and aminomethylphosphonic acid (AMPA) in human and bovine milk and human urine matrices. Samples were extracted with an acidified aqueous solution on a high-speed shaker. Stable isotope labeled internal standards were added with the extraction solvent to ensure accurate tracking and quantitation. An additional cleanup procedure using partitioning with methylene chloride was required for milk matrices to minimize the presence of matrix components that can impact the longevity of the analytical column. Both analytes were analyzed directly, without derivatization, by liquid chromatography tandem mass spectrometry using two separate precursor-to-product transitions that ensure and confirm the accuracy of the measured results. Method performance was evaluated during validation through a series of assessments that included linearity, accuracy, precision, selectivity, ionization effects and carryover. Limits of quantitation (LOQ) were determined to be 0.1 and 10 µg/L (ppb) for urine and milk, respectively, for both glyphosate and AMPA. Mean recoveries for all matrices were within 89–107% at three separate fortification levels including the LOQ. Precision for replicates was ≤7.4% relative standard deviation (RSD) for milk and ≤11.4% RSD for urine across all fortification levels. All human and bovine milk samples used for selectivity and ionization effects assessments were free of any detectable levels of glyphosate and AMPA. Some of the human urine samples contained trace levels of glyphosate and AMPA, which were background subtracted for accuracy assessments. Ionization effects testing showed no significant biases from the matrix. A successful independent external validation was conducted using the more complicated milk matrices to demonstrate method transferability.  相似文献   

4.
Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides.  相似文献   

5.
Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70mg/L, while in sediments and soils values were between 0.5 and 5.0mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field.  相似文献   

6.
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT(50) values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.  相似文献   

7.
Persistent Organic Pollutants (POPs) and Polycyclic Aromatic Hydrocarbons (PAHs) are important classes of compounds of serious environmental concern. These compounds were measured in waters, sediments and soils from several high altitude sites in the Sagarmatha National Park (Nepal) and included in the Himalayan ridge.In water samples, low-level substituted PCBs and PBDEs, along with more volatile PAHs, were the most common contaminants. In sediment and soil samples, the PCB profile was mainly composed of medium-level chlorinated congeners and significantly correlated with altitude. The PAH profile for water and soil samples showed the main contribution of pyrogenic PAHs due to emissions of solid combustion, whereas the profile for sediments indicated the main contribution of pyrogenic PAHs from gasoline emissions. The PAH levels measured in Himalayan samples must be considered as low to medium contaminated, whereas the regarded Himalayan stations can be considered undisturbed remote areas concerning PCB, PBDE and OC compounds.  相似文献   

8.
Gao S  Ryu J  Tanji KK  Herbel MJ 《Chemosphere》2007,67(5):862-871
To sustain agricultural productivity, evaporation basins (or ponds) have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, USA. The drainage water contains elevated concentration of trace elements including selenium (Se) and arsenic (As). Unlike Se, little information is available about As, a potentially high risk element. The objective of this study was to characterize the chemical behavior of As and acquire data for better understanding of biogeochemical processes and conditions affecting As fate in evaporation ponds. The study site was a 726 ha evaporation basin facility (containing 10 cells with water flowing in series) in the hydrologically closed Tulare Basin of California. We examined water chemistry, As concentration and speciation along the water flow path between cells as well as within the cells. Arsenic concentrations in the water increased linearly with Cl(-), a conservative ion from evapoconcentration. Reduced As species as arsenite [As(III)] and organic arsenic (org-As) also increased with increases in Cl(-) and salinity. Water samples with elevated EC (i.e., towards the end of flow path) had high dissolved organic matter, low dissolved oxygen, and elevated sulfide concentrations, indicating the development of reducing conditions. We hypothesize that such changes could facilitate the reduction of arsenate [As(V)] to As(III) and org-As. Elevated As in sediment profiles indicate a solid phase sink mechanism, but not significant enough to remove and reduce As concentrations in the water columns. These findings help us better define the processes that affect As in drainage facilities and contribute to our understanding of how As behaves in other regions of the world that have similar climatic and hydrogeochemical conditions.  相似文献   

9.
The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT(50) values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, (14)C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 +/- 0.002% and 0.005 +/- 0.001% of the applied radioactivity was measured in rape and barley, respectively.  相似文献   

10.
The method of single-strand conformational polymorphism (SSCP) was modified in our laboratories for the characterization of baculoviruses, insect viruses with great potential for use as bioinsecticides in biological protection programs. A series of primers were synthesized after the comparison of the polyhedrin gene sequences of over 20 baculoviruses. Polyhedrin is a highly conserved protein which is responsible for the persistence of the virus in the environment. Universal primers were designed which could be used in polymerase chain reactions (PCR) containing genomic DNA from an array of nucleopolyhedrosis viruses (NPVs) including these which are used as biopesticides against important pests of forests and crops, such as Anticarsia gemmatalis, Spodoptera frugiperda, Lymantria dispar, Lymantria monacha and many others. PCR products were denatured and subjected to single-strand DNA electrophoresis at variable temperatures (MSSCP) where, after silver staining, they gave ssDNA band patterns characteristic for each baculovirus species. This technique can be potentially applied to detect baculoviruses in insects collected in the field, as well as to plant tissues and the excrements or bodies of predators without need for sequencing the PCR products. Sometimes MSSCP can be used not only for species determination but also as an indication of genomic variability which can be related to infectivity.  相似文献   

11.
Abstract

Agricultural chemicals sporadically occur at detectable levels in the surface waters of intensively farmed watersheds. HSPF, a previously released model of agricultural chemicals in surface water, had been used to predict concentrations which were much higher (10 X) than those actually observed during monitoring studies. A new model, SURFACE, is described here which is much simpler than HSPF and gives better predictions of surface water concentrations. SURFACE uses PRZM, an EPA model, to calculate edge‐of‐field runoff losses and simple hydraulic routing algorithms to determine concentrations at the bottom of large river basins. In water systems sampled during 1985 and 1986, SURFACE predictions of annualized mean concentrations for alachlor, atrazine, cyanazine and metolachlor were within 0.09 ppb half of the time.  相似文献   

12.
13.
14.
Abstract

The present study was undertaken to investigate the effect of chronic treatment with two sublethal doses of Carbofuran (carbamate insecticide) and Glyphosate (organophosphorus herbicide) on body weight and semen characteristics in mature male New Zealand white rabbits. Pesticide treatment resulted in a decline in body weight, libido, ejaculate volume, sperm concentration, semen initial fructose and semen osmolality. This was accompanied with increases in the abnormal and dead sperm and semen methylene blue reduction time. The hazardous effect of these pesticides on semen quality continued during the recovery period, and was dose‐dependent. These effects on sperm quality may be due to the direct cytotoxic effects of these pesticides on spermatogenesis and/or indirectly via hypothalami‐pituitary‐testis axis which control the reproductive efficiency.  相似文献   

15.
Abstract

This paper describes a simple, inexpensive, highly sensitive, selective, and efficient electrochemical method to determine glyphosate (GLY) in samples of milk, orange juice, and agricultural formulation. The oxidation reaction on the electrode surface was electrochemically characterised by cyclic voltammetry (CV) and square wave voltammetry (SWV). The investigation of GLY at carbon paste electrode revealed a non-reversible oxidation peak at +0.95 V versus Ag/AgCl, which was used for electrochemical detection of GLY. The operating parameters (pH, frequency, step potential, and amplitude) were optimised in relation to the peak current intensity, and a calibration curve was set up in a concentration range of 4.40?×?10?8–2.80?×?10?6 mol L?1, with a detection limit of 2?×?10?9 mol L?1. After calibration curve was plotted, the developed procedure was applied to determine GLY in previously contaminated samples: milk and orange juice, and in a commercial formulation, obtaining recovery values between 98.31% and 103.75%. These results show that the proposed method can be used for GLY quantification in different samples with high sensitivity, specificity, stability, and reproducibility.  相似文献   

16.
Semifluorinated n-alkanes (SFAs) with carbon chain lengths of 22 to approximately 36 atoms are present in fluorinated ski waxes to reduce the friction between ski base and snow, resulting in a better glide. Semifluorinated n-alkenes (SFAenes) are byproducts in the production process of SFAs and are also found in ski waxes. Snow and soil samples from a ski area in Sweden were taken after a large skiing competition and after snowmelt, respectively, and analyzed for SFAs and SFAenes. Single analyte concentrations in snow (analyzed as melt water) ranged from a few ng L−1 up to 300 μg L−1. ∑SFA concentrations decreased significantly from the start to the finish of the ski trail. Single analyte concentrations in soil ranged up to 9 ng g−1 dw. ∑SFA concentrations in soil did not show a trend along the ski trail. This may be due to the fact that concentrations in soil, although strongly influenced by the competition, reflect inputs during the whole skiing season. The chemical inventory in snow was greater than the inventory in soil for shorter chain SFAs (C22C28) and for all SFAenes. Additionally, a significant change in SFA patterns between snow and soil samples was found. These observations suggested volatilization of shorter chain SFAs and of SFAenes during snowmelt. Evidence for long-term accumulation of SFAs in surface soil over several skiing seasons was not found.  相似文献   

17.
This investigation was undertake to determine the effect of glyphosate, chlorpyrifos and atrazine on the lag phase and growth rate of nonochratoxigenic A. niger aggregate strains growing on soil extract medium at ?0.70, ?2.78 and ?7.06 MPa. Under certain conditions, the glyphosate concentrations used significantly increased micelial growth as compared to control. An increase of about 30% was observed for strain AN 251 using 5 and 20 mg L?1 of glyphosate at ?2.78 MPa. The strains behaved differently in the presence of the insecticide chlorpyrifos. A significant decrease in growth rate, compared to control, was observed for all strains except AN 251 at ?2.78 MPa with 5 mg L?1. This strain showed a significant increase in growth rate. With regard to atrazine, significant differences were observed only under some conditions compared to control. An increase in growth rate was observed for strain AN 251 at ?2.78 MPa with 5 and 10 mg L?1 of atrazine. By comparison, a reduction of 25% in growth rate was observed at ?7.06 MPa and higher atrazine concentrations. This study shows that glyphosate, chlorpyrifos and atrazine affect the growth parameters of nonochratoxigenic A. niger aggregate strains under in vitro conditions.  相似文献   

18.
A new approach for the identification of suspect trace organic contaminants in drinking and surface waters is presented. Samples were initially analyzed using a target determination method for two contamination tracers, carbamazepine (CBZ) and atrazine (ATZ). This method used offline solid-phase extraction and online solid-phase extraction techniques coupled to liquid chromatography-triple quadrupole mass spectrometry to accelerate the sample preparation process and improve method performance. CBZ and ATZ were found respectively in 31% and 56% of the samples, and concentrations were usually <20 ng L−1. These samples were re-analyzed with a similar method on a quadrupole time-of-flight mass spectrometer to identify suspect contaminants by means of exact mass measurements and isotope patterns. A database of 264 common organic contaminants was built and used in conjunction with a Molecular Feature algorithm to identify the presence of these substances in drinking and surface water collected from different sources at various locations across Canada. Several organic contaminants were identified in the samples, but only the presence of caffeine, desethylatrazine, simazine and venlafaxine could be verified by comparison to pure standards. The presence of desethylatrazine was also confirmed by MS/MS experiments. These results suggest that target analysis for tracers of organic contamination may be a helpful tool to prioritize samples which should be further screened for suspect contaminants. This study also shows that the combination of separation techniques (offline and online SPE, LC) contribute to advance the applicability of high-resolution mass spectrometry for the identification of trace organic contaminants by accelerating the preparation step, reducing complexity and increasing analyte concentrations for optimal detection.  相似文献   

19.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   

20.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号