首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar A  Pandey AK  Singh SS  Shanker R  Dhawan A 《Chemosphere》2011,83(8):1124-1132
Extensive production and consumption of nanomaterials such as ZnO and TiO2 has increased their release and disposal into the environment. The accumulation of nanoparticles (NPs) in ecosystem is likely to pose threat to non-specific targets such as bacteria. The present study explored the effect of ZnO and TiO2 NPs in a model bacterium, Salmonella typhimurium. The uptake of ZnO and TiO2 bare NPs in nano range without agglomeration was observed in S. typhimurium. TEM analysis demonstrated the internalization and uniform distribution of NPs inside the cells. Flow cytometry data also demonstrates that both ZnO and TiO2 NPs were significantly internalized in the S. typhimurium cells in a concentration dependent manner. A significant increase in uptake was observed in the S. typhimurium treated even with 8 and 80 ng mL−1 of ZnO and TiO2 NPs with S9 after 60 min, possibly the formation of micelles or protein coat facilitated entry of NPs. These NPs exhibited weak mutagenic potential in S. typhimurium strains TA98, TA1537 and Escherichia coli (WP2uvrA) of Ames test underscoring the possible carcinogenic potential similar to certain mutagenic chemicals. Our study reiterates the need for re-evaluating environmental toxicity of ZnO and TiO2 NPs presumably considered safe in environment.  相似文献   

2.
3.
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles.  相似文献   

4.
Cu/La共掺杂TiO2光催化氧化水中的氨氮   总被引:1,自引:0,他引:1  
采用水解-沉淀法制备了Cu/La共掺杂纳米TiO2催化剂,利用XRD、XPS和BET技术对其进行表征,并考察了在紫外灯下,共掺杂TiO2对氨氮的光催化氧化工艺条件。物相结构和比表面积测试结果表明,共掺杂催化剂具有较好的锐钛矿晶型,孔径分布为4~8 nm,Cu/La共掺杂TiO2La以La3+,Cu是以Cu2+、Cu+的形式掺杂进入TiO2的晶格。光催化实验表明:所得改性光催化剂对氨氮的去除及焦化废水的处理均具有较高的催化活性。  相似文献   

5.
Metal oxide nanomaterials have exhibited toxicity to a variety of aquatic organisms, especially microbes and invertebrates. To date, few studies have evaluated the toxicity of metal oxide nanomaterials on aquatic vertebrates. Therefore, this study examined effects of ZnO, TiO2, Fe2O3, and CuO nanomaterials (20-100 nm) on amphibians utilizing the Frog Embryo Teratogenesis Assay Xenopus (FETAX) protocol, a 96 h exposure with daily solution exchanges. Nanomaterials were dispersed in reconstituted moderately hard test medium. These exposures did not increase mortality in static renewal exposures containing up to 1000 mg L−1 for TiO2, Fe2O3, CuO, and ZnO, but did induce developmental abnormalities. Gastrointestinal, spinal, and other abnormalities were observed in CuO and ZnO nanomaterial exposures at concentrations as low as 3.16 mg L−1 (ZnO). An EC50 of 10.3 mg L−1 ZnO was observed for total malformations. The minimum concentration to inhibit growth of tadpoles exposed to CuO or ZnO nanomaterials was 10 mg L−1. The results indicate that select nanomaterials can negatively affect amphibians during development. Evaluation of nanomaterial exposure on vertebrate organisms are imperative to responsible production and introduction of nanomaterials in everyday products to ensure human and environmental safety.  相似文献   

6.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

7.
Photocatalytic degradation of the herbicide, pendimethalin (PM) was investigated with BaTiO3/TiO2 UV light system in the presence of peroxide and persulphate species in aqueous medium. The nanoparticles of BaTiO3 and TiO2 were obtained by gel to crystallite conversion method. These photo catalysts are characterized by energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), x-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) adsorption isotherm and reflectance spectral studies. The quantum yields for TiO2 and BaTiO3 for the degradation reactions are 3.166 Einstein m?2 s?1 and 2.729 Einstein m?2 s?1 and catalytic efficiencies are 6.0444 × 10?7 mg?2h?1L2 and 5.403 × 10?7 mg?2h?1L2, respectively as calculated from experimental results. BaTiO3 exhibited comparable photocatalytic efficiency in the degradation of pendimethalin as the most widely used TiO2 photocatalyst. The persulphate played an important role in enhancing the rate of degradation of pendimethalin when compared to hydrogen peroxide. The degradation process of pendimethalin followed the first-order kinetics and it is in agreement with Langmuir-Hinshelwood model of surface mechanism. The reason for high stability of pendimethalin for UV-degradation even in the presence of catalyst and oxidizing agents were explored. The higher rate of degradation was observed in alkaline medium at pH 11. The degradation process was monitored by spectroscopic techniques such as ultra violet-visible (UV-Vis), infrared (IR) and gas chromatography mass spectroscopy (GC-MS). The major intermediate products identified were: N-propyl-2-nitro-6-amino-3, 4-xylidine, (2, 3-dimethyl-5-nitro-6-hydroxy amine) phenol and N-Propyl-3, 4-dimethyl-2, 6-dinitroaniline by GC-MS analysis and the probable reaction mechanism has been proposed based on these products.  相似文献   

8.
The growing application of engineered nanomaterials is leading to an increased occurrence of nanoparticles (NPs) in the environment. Thus, there is a need to better understand their potential impact on the environment. This study evaluated the toxicity of nanosized TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 towards the yeast Saccharomyces cerevisiae based on O2 consumption and cell membrane integrity. In addition, the state of dispersion of the nanoparticles in the bioassay medium was characterized.  相似文献   

9.

The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir–Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm? 1 and 0.984 ppm min? 1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

10.
Among the emerging literature addressing the biological effects of nanoparticles, very little information exists, particularly on aquatic organisms, that evaluates nanoparticles in comparison to non-nanocounterparts. Therefore, the potential effects of nano-scale and non-nano-scale TiO2 and ZnO on the water flea, Daphnia magna, were examined in 48-h acute toxicity tests using three different test media, several pigment formulations – including coated nanoparticles – and a variety of preparation steps. In addition, a 21-d chronic Daphnia reproduction study was performed using coated TiO2 nanoparticles. Analytical ultracentrifugation analyses provided evidence that the nanoparticles were present in a wide range of differently sized aggregates in the tested dispersions. While no pronounced effects on D. magna were observed for nano-scale and non-nano-scale TiO2 pigments in 19 of 25 acute (48-h) toxicity tests (EC50 > 100 mg L−1), six acute tests with both nano- and non-nano-scale TiO2 pigments showed slight effects (EC10, 0.5–91.2 mg L−1). For the nano-scale and non-nano-scale ZnO pigments, the acute 48-h EC50 values were close to the 1 mg L−1 level, which is within the reported range of zinc toxicity to Daphnia. In general, the toxicity in the acute tests was independent of particle size (non-nano-scale or nano-scale), coating of particles, aggregation of particles, the type of medium or the applied pre-treatment of the test dispersions. The chronic Daphnia test with coated TiO2 nanoparticles demonstrated that reproduction was a more sensitive endpoint than adult mortality. After 21 d, the NOEC for adult mortality was 30 mg L−1 and the NOEC for offspring production was 3 mg L−1. The 21-d EC10 and EC50 values for reproductive effects were 5 and 26.6 mg L−1, respectively. This study demonstrates the utility of evaluating nanoparticle effects relative to non-nano-scale counterparts and presents the first report of chronic exposure to TiO2 nanoparticles in D. magna.  相似文献   

11.
The increasing production of nanomaterials will in turn increase the release of nanosized byproducts to the environment. The aim of this study was to evaluate the behaviour, uptake and ecotoxicity of TiO2 byproducts in the earthworm Eisenia fetida. Worms were exposed to suspensions containing 0.1, 1 and 10 mg/L of byproducts for 24 h. Size of TiO2 byproducts showed aggregation of particles up to 700 μm with laser diffraction. Only worms exposed at 10 mg/L showed bioaccumulation of titanium (ICP-AES), increasing expression of metallothionein and superoxide dismutase mRNA (Real-time PCR) and induction of apoptotic activity (Apostain and TUNEL). TiO2 byproducts did not induce cytotoxicity on cœlomocytes, but a significant decrease of phagocytosis was observed starting from 0.1 mg/L. In conclusion, bioaccumulation of byproducts and their production of reactive oxygen species could be responsible for the alteration of the antioxidant system in worms.  相似文献   

12.
The effects of TiO2 nanoparticles on the transport of Cu through four different soil columns were studied. For two soils (HB and DX), TiO2 nanoparticles acted as a Cu carrier and facilitated the transport of Cu. For a third soil (BJ) TiO2 nanoparticles also facilitated Cu transport but to a much lesser degree, but for a fourth soil (HLJ) TiO2 nanoparticles retarded the transport of Cu. Linear correlation analysis indicated that soil properties rather than sorption capacities for Cu primary governed whether TiO2 nanoparticles-facilitated Cu transport. The TiO2-associated Cu of outflow in the Cu-contaminated soil columns was significantly positively correlated with soil pH and negatively correlated with CEC and DOC. During passage through the soil columns 46.6-99.9% of Cu initially adsorbed onto TiO2 could be “stripped” from nanoparticles depending on soil, where Cu desorption from TiO2 nanoparticles increased with decreasing flow velocity and soil pH.  相似文献   

13.
Song C  Chen P  Wang C  Zhu L 《Chemosphere》2012,86(8):853-859
Degradation of perfluorooctanoic acid (PFOA) is of great importance due to its global distribution, persistence and toxicity to bioorganisms. In present study, a composite TiO2 with multiple wall carbon nano-tubes (MWCNTs) was synthesized using sol-gel method and it was used as photocatalyst to degrade PFOA in water. The prepared composite catalyst displayed significant absorption in UV to visible light region. The loading content of TiO2 on MWCNTs could be adjusted by changing the ratio of precursor to MWCNTs. Due to the combined effect of the adsorption ability and e transport capacity of MWCNT, the composites displayed much higher photocatalytic ability to PFOA as compared to pure TiO2 under UV irradiation. The photocatalyst prepared with 10:1 of tetrabutyl titanate/MWCNT was the most effective. With the optimal dosage at 1.6 g L−1, almost 100% of PFOA was degraded in acid medium after irradiation for 8 h. It was proposed that PFOA were mainly degraded by stepwise losing a moiety of CF2.  相似文献   

14.
The combined effects of titanium dioxide (TiO2) nanoparticles and humic acid (HA) on the bioaccumulation of cadmium (Cd) in Zebrafish were investigated. Experimental data on the equilibrium Cd bioaccumulation suggest that only the dissolved Cd effectively contributed to Cd bioaccumulation in HA solutions whereas both the dissolved and TiO2 associated Cd were accumulated in TiO2 or the mixture of HA and TiO2 solutions, due likely to the additional intestine uptake of the TiO2-bound Cd. The equilibrium Cd bioaccumulation in the mixed system was comparable to that in the corresponding HA solutions, and significantly lower than that in the corresponding TiO2 solutions (n = 3, p < 0.05). The presence of either HA or TiO2 (5-20 mg L−1) in water slightly increased the uptake rate constants of Cd bioaccumulation whereas combining HA and TiO2 reduced the uptake rate constants.  相似文献   

15.
Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO2, and graphitic carbon nitride (g-C3N4) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.  相似文献   

16.
As in vivo system, we propose Drosophila melanogaster as a useful model for study the genotoxic risks associated with nanoparticle exposure. In this study we have carried out a genotoxic evaluation of titanium dioxide (TiO2), zirconium oxide (ZrO2) and aluminium oxide (Al2O3) nanoparticles and their microparticulated forms in D. melanogaster by using the wing somatic mutation and recombination assay. This assay is based on the principle that loss of heterozygosis and the corresponding expression of the suitable recessive markers, multiple wing hairs and flare-3, can lead to the formation of mutant clones in treated larvae, which are expressed as mutant spots on the wings of adult flies. Third instar larvae were feed with TiO2, ZrO2 and Al2O3 nanoparticles, and their microparticulated forms, at concentrations ranging from 0.1 to 10 mM. Although a certain level of aggregation/agglomeration was observed in solution, it must be noted than the constant digging activity of larvae ensures that treated medium pass constantly through the digestive tract ensuring exposure. The results showed that no significant increases in the frequency of all spots (e.g. small single, large single, twin, total mwh and total spots) were observed, indicating that these nanoparticles were not able to induce genotoxic activity in the wing spot assay of D. melanogaster. Negative data were also obtained with the microparticulated forms. This indicates that the nanoparticulated form of the selected nanomaterials does not modify the potential genotoxicity of their microparticulated versions. These in vivo results contribute to increase the genotoxicity database on the TiO2, ZrO2 and Al2O3 nanoparticles.  相似文献   

17.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

18.
We present direct evidence of the release of synthetic nanoparticles from urban applications into the aquatic environment. We investigated TiO2 particles as these particles are used in large quantities in exterior paints as whitening pigments and are to some extent also present in the nano-size range.TiO2 particles were traced from exterior facade paints to the discharge into surface waters. We used a centrifugation based sample preparation which recovers TiO2 particles between roughly 20 and 300 nm. Analytical electron microscopy revealed that TiO2 particles are detached from new and aged facade paints by natural weather conditions and are then transported by facade runoff and are discharged into natural, receiving waters. Microscopic investigations are confirmed by bulk chemical analysis. By combining results from microscopic investigations with bulk chemical analysis we calculated the number densities of synthetic TiO2 particles in the runoff.  相似文献   

19.
This study has been undertaken to investigate the relationship between Pd oxidation states on TiO2 photocatalysts and their photocatalytic oxidation behaviors of NO. Three types of Pd-modified TiO2 with different Pd oxidation states were prepared by wet impregnation method, neutralization method and photodeposition method, respectively. And these Pd-modified photocatalysts were characterized by X-ray diffraction analysis, X-ray photoelectron spectrum analysis (XPS), UV–Vis diffuse reflectance spectra and temperature programmed desorption (TPD). It was found from XPS results that the dominant oxidation states of Pd on these Pd-modified TiO2 catalysts were Pd2+, PdO, and Pd0, respectively. NO-TPD results showed that the NO adsorption capacity was improved greatly by the modification of Pd2+ ions. The activity tests showed that Pd-modified TiO2 by a wet impregnation method increased photocatalytic activity compared to pure TiO2 (Degussa P25). It was concluded that Pd2+ ions on as-prepared TiO2 catalysts provided key contributions to the improvement of photocatalytic activity. However, Pd0 and PdO deposits on TiO2 almost had no positive effect on NO oxidation. The mechanism of photocatalytic oxidation of NO in gas phase over Pd-modified TiO2 was also proposed.  相似文献   

20.
The present work involves the photocatalytic mineralization of glyphosate on a plug flow reactor by UV/TiO2. The effect of catalyst loading shows an optimal value (0.4 g L?1) which is necessary to mineralize glyphosate. The kinetic rate of glyphosate mineralization decreases with the increasing initial concentration of glyphosate, and the data can be described using the first-order model. An alkaline environment is conducive to glyphosate mineralization. The mineralization efficiency increases with elevated flow rate to 114 mL min?1, which is followed by a decrease with a further increase in flow rate due to the reduction of the residence time. The presence of external oxidants (K2S2O8, H2O2 and KBrO3) and photosencitizer (humic acid) can significantly enhance glyphosate mineralization. Photocatalysis oxidation ability of the three studied oxidants decrease in the order of: S2O8 2? > BrO3 ? > H2O2. Finally, the Langmuir–Hinshelwood (L-H) model was used to rationalize the mechanisms of reactions occurring on TiO2 surfaces and L-H model constants were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号