首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

2.
Three natural nonaggregated soil samples, with similar grain-size distributions, have been used to determine the dispersive behavior of porous media under steady, saturated and unsaturated flow conditions. Tritium was used as a tracer and was found to have no sorption on the solid matrix. Generated breakthrough curves (BTCs) for the unsaturated experiments were symmetrical with no evidence of tailing. The unsaturated experiments for two of the soils were adequately described by considering all the water in the pore volume as mobile. However, about 10% of the pore water, independent of the degree of saturation, was found to be immobile in the case of the third soil during unsaturated flow. For this soil, there was no mass transfer between the two water regions, indicating that the immobile water is essentially isolated from the flowing water fraction. For all three soils, dispersivity under unsaturated conditions was found to be higher, independent of the degree of water saturation, than the value determined for the saturated experiments. This is inconsistent with what would be expected from the simple bundle-of-capillary-tubes model and does not agree well with a more sophisticated conceptualization of the porous medium. The data, however, clearly indicate a wider range in pore-water velocities when these soils are desaturated.  相似文献   

3.
4.
Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, 14C- and 13C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied 14C was mineralized. The bioavailable, water extractable portion was low (9 % of applied 14C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied 14C was incorporated into organo-clay complexes as NER, whereas 9 % of applied 14C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the clay fraction to other soil fractions was observed, implying a dynamic behavior of incorporated residues, which may result in bioaccessibility of the NER of nonylphenol.  相似文献   

5.
Laboratory studies were conducted to evaluate the effects of temperature and water pressure head on the degradation of the diketonitrile metabolite (DKN) of isoxaflutole during 84 d in samples collected in a loamy soil under conventional (CT) and conservation (MT) tillage systems. Soil temperature was the major factor controlling DKN degradation in the two tillage systems. The shortest half-lives (T1/2) were measured in the seedbed samples under MT at 25 °C and −33 cm water pressure head. We found that mouldboard ploughing under CT was responsible for the spatial variability of herbicide degradation properties, whereas under MT herbicide degradation was associated to the vertical distribution of organic matter.  相似文献   

6.
Li Y  Yediler A  Ou Z  Conrad I  Kettrup A 《Chemosphere》2001,45(1):67-75
Effects of a non-ionic surfactant (Tween-80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm were studied using 14C-labeled phenanthrene. The mineralization and metabolism of phenanthrene were fast in such a system. At least 90% of the applied phenanthrene were transformed within 24 days. Only 0.3% of the applied 14C-activity were identified to be the parent phenanthrene. Most of the applied 14C-activity (70%) was recovered from wheat, in which ca. 70% were associated with wheat shoots (stems and leaves) and ca. 30% wheat roots. 33% and 20% of the applied 14C-activity had been constructed into wheat tissues of shoots and roots, respectively. The 14C-activity recovered in forms of CO2 and volatile organic chemicals (VOCs) was 12-16% and 4-5%, respectively. The major metabolites of phenanthrene were polar compounds (18% of the applied 14C) and only 2.1% were identified as non-polar metabolites. No phenanthrene was found in wheat shoots indicating that it could not be transported from roots to upper parts of the plant but in form of metabolites (mostly polar metabolites). Foliar uptake of 14C-activity via air in form of 14CO2 occurred. The presence of Tween-80 significantly enhanced the degradation of phenanthrene, which could be attributed to its increase of microbial activities in the system. Tween-80 also significantly (P < 0.05) reduced the phenanthrene level in wheat roots, which probably resulted from desorption of phenanthrene from root surface caused by the surfactant.  相似文献   

7.
We designed a microcosm experiment to assess the influence of inoculation with Eisenia foetida earthworms and the establishment of an Avena sativa cover crop on biological (enzyme activities and labile carbon fractions) soil quality indicators in a soil treated with a composted organic residue, and to determine the contribution of these treatments to carbon dioxide emissions from the soil to the atmosphere of the microcosm. The microcosms were incubated for 53 days under 28 °C/18 °C day/night temperatures. The addition of earthworms and the planting of A. sativa increased dehydrogenase activity of compost amended soil by about 44% after 23 days of incubation. The metabolic potential, calculated as the ratio dehydrogenase activity/water soluble C, was higher in the compost amended soil planted with A. sativa. The highest total amount of CO2–C evolved occurred in the soil treated with composted residue and earthworms (about 40% of the total amount of CO2 evolved came from earthworm activity). The planting of A. sativa increased the decomposition rate constant of organic matter in the amended soil but decreased the potentially mineralizable C pool. In conclusion, the establishment of an A. sativa cover crop and the addition of E. foetida to a degraded agricultural soil treated with composted residue were effective treatments for improving the biological and biochemical quality and the metabolic potential of the soil.  相似文献   

8.
The influences of macronutrient additions on nickel (Ni) uptake and distribution in the subcellular structures and macromolecular components of the dinoflagellate Prorocentrum donghaiense Lu were examined using a radioisotope tracer method. The results showed that nitrate addition enhanced the uptake of Ni by P. donghaiense, whereas phosphate addition inhibited Ni uptake at high-Ni concentration. Nitrate or phosphate addition significantly affected Ni distribution in the subcellular structures and components. The majority of Ni was found in the soluble substances (>70%) and in the proteins (55.0-79.6%) of the algal cells. Urea reduced the Ni content in the amino acid-carbohydrate but elevated its content in proteins, and shown significantly correlated with the protein content of the algal cells. Thus, nutrient enrichment could influence both metal uptake and its distribution in the subcellular structures and components of the phytoplankton, as well as its subsequent transfer in marine food chains.  相似文献   

9.
Emissions of volatile soil fumigant 1,3-dichloropropene (1,3-D) from soil to air are a significant concern in relation to air quality, and cost-effective strategies to reduce such emissions are urgently required by growers to help them comply with increasingly stringent regulations. In this work, application of a rice husk-derived biochar to the surface of a sandy loam soil chamber reduced soil–air emissions of 1,3-D from 42% in a control (no biochar) to 8% due to adsorption onto the biochar. This adsorbed 1,3-D showed a potential for re-volatilization into air and solubilization into the soil–liquid phase. Biochar at the soil surface also reduced soil–gas concentrations in the upper soil; based on the determination of concentration–time values, this may limit 1,3-D-induced nematode control in the upper soil. In batch studies, the mixing of biochar into the soil severely limited nematode control; 1,3-D application rates around four times greater than the maximum permissible limit would be required to give nematode control under such conditions. Therefore, the use of biochar as a surface amendment, while showing an emission reduction benefit, may limit pest control during subsequent fumigations if, as seems probable, it is plowed into the soil.  相似文献   

10.
贝壳粉对污染土壤中Pb、Zn、Cd的稳定化作用   总被引:6,自引:0,他引:6  
价廉易得且无二次污染的稳定剂开发是重金属污染土壤稳定化修复的关键。以铅蓄电池污染场地Pb污染土壤(CQ土壤样品)及铅锌冶炼厂周边Pb、Zn、Cd复合污染土壤(ZZ土壤样品)为研究对象,用贝壳粉进行稳定化研究,通过毒性特征浸出测试(TCLP)评价其稳定化效果。X射线衍射(XRD)和X射线荧光光谱(XRF)等分析结果表明,贝壳粉的主要成分为CaCO3。稳定化实验结果表明:贝壳粉在2%(质量分数,下同)~10%的添加量下,CQ土壤样品中Pb的浸出浓度降低22%~62%;ZZ土壤样品中Pb、Zn、Cd的浸出浓度分别降低11%~91%、26%~65%、18%~64%。贝壳粉添加后土壤pH升高可能会使重金属形成氢氧化物沉淀;部分重金属可能会通过离子交换作用形成碳酸盐沉淀。经贝壳粉稳定化后土壤中重金属浸出浓度降低,有效降低了重金属的迁移性,因此贝壳粉可作为稳定剂应用于重金属污染土壤的修复。  相似文献   

11.

Purpose

Phosphorus amendments have been widely and successfully used in immobilization of one single metal (e.g., Pb) in contaminated soils. However, application of P amendments in the immobilization of multiple metals and particularly investigations about the effects of planting on the stability of the initially P-induced immobilized metals in the contaminated soils are far limited.

Methods

This study was conducted to determine the effects of phosphate rock tailing (PR), triple superphosphate fertilizer (TSP), and their combination (P+T) on mobility of Pb, Cu, and Zn in a multimetal-contaminated soil. Chinese cabbage (Brassica rapa subsp. chinensis) (metal-sensitive) and Chinese kale (Brassica alboglabra Bailey) (metal-resistant) were introduced to examine the effects of planting on leaching of Pb, Cu, and Zn in the P-amended soils.

Results

All three P treatments greatly reduced CaCl2-extractable Pb and Zn by 55.2?C73.1% and 14.3?C33.6%, respectively. The PR treatment decreased CaCl2-extractable Cu by 27.8%, while the TSP and P+T treatments increased it by 47.2% and 44.4%, respectively. All three P treatments were effective in reducing simulated rainwater leachable Pb, with dissolved and total leachable Pb decrease by 15.6?C81.9% and 16.3?C64.5%, respectively. The PR treatment reduced the total leachable Zn by 16.8%, while TSP and P+T treatments increased Zn leaching by 92.7% and 78.9%, respectively. However, total Cu leaching were elevated by 17.8?C178% in all P treatments. Planting promoted the leaching of Pb and Cu by 98.7?C127% and 23.5?C170%, respectively, especially in the colloid fraction, whereas the leachable Zn was reduced by 95.3?C96.5% due to planting. The P treatments reduced the uptake of Pb, Cu, and Zn in the aboveground parts of Chinese cabbage by up to 65.1%, 34.3%, and 9.59%, respectively. Though P treatments were effective in reducing Zn concentrations in the aboveground parts of the metal-resistant Chinese kale by 22.4?C28.9%, they had little effect on Pb and Cu uptake.

Conclusions

The results indicated that all P treatments were effective in immobilizing Pb. The effect on the immobilization of Cu and Zn varied with the different P treatments and evaluation methods. Metal-sensitive plants are more responsive to the P treatments than metal-resistant plants. Planting affects leaching of metals in the P-amended soils, specially leaching of colloid fraction. The conventional assessment on leaching risks of heavy metals by determining dissolved metals (filtered through 0.45-??m pore size membrane) in leachates could be underestimated since colloid fraction may also contribute to the leaching.  相似文献   

12.
A microcosm incubation study using an aquic brown soil from northeast China (a Cambisol in the UN Food and Agriculture Organization FAO Soil Taxonomy) was conducted to examine the effects of different concentrations (0, 50, 150, and 250 mg kg?1) of methamidophos (O,S-dimethyl phosphoramidothioato) on Pseudomonas, one of the most important gram-negative bacteria in soil. Amplified ribosomal DNA restriction analysis (ARDRA) was performed to study the Pseudomonas community structure, an in vitro assay was made to test the antagonistic activity of isolated Pseudomonas strains against soil-borne Rhizoctonia solani, a major member of the pathogens highly related to soil-borne plant diseases, and special primer amplification and sequencing were performed to investigate the diversity of phlD, an essential gene in the biosynthesis of 2, 4-diacetylphloroglucinol (2, 4-DAPG), which has biocontrol activity in phlD +isolates. With exposure to increasing methamidophos concentrations, the total number of soil Pseudomonas ARDRA patterns decreased significantly, but with less change in the same treatments over 1, 3, and 5 weeks of incubation. The number of isolated Pseudomonas strains with antagonistic activity against R. solani as well as the diversity and appearance frequency of the strains' phlD gene also decreased with increasing concentrations of methamidophos, especially at high methamidophos concentrations. Applying methamidophos could increase the risk of soil-borne plant diseases by decreasing the diversity of the soil Pseudomonas community and the amount of R. solani antagonists, particularly those with the phlD gene.  相似文献   

13.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

14.
通过田间种植小麦实验,研究添加不同剂量拜耳赤泥(0%、1%、2%、3%、4%和5%)对重金属污染的石灰性土壤Pb、Cd化学形态和小麦幼苗根系的影响。培养1个月,添加赤泥显著地提高了土壤pH值,提高幅度随赤泥投加量增加而增大。培养3个月,添加不同剂量的赤泥均明显降低土壤中可交换态Pb和Cd的含量,赤泥投加量为5%时效果最为显著,分别比对照下降90%和72%。添加赤泥对所种植小麦幼苗的根系也有影响。种植5个月,小麦根系总根长、总表面积和总体积等随添加赤泥的剂量增加呈现先增大后减小的趋势,赤泥投加量为3%时增幅最大,总根长、总表面积和总体积分别比对照增加88.23%、75%和90.32%。研究表明,赤泥可作为重金属污染的石灰性土壤的理想改良剂,但考虑到小剂量赤泥(即1%~3%)促进重金属污染农田中小麦根系的生长,建议在种植区采用小剂量赤泥(即3%)处理的重金属污染修复方案。  相似文献   

15.
The application of swine wastewater to the soil for agricultural purposes results in the addition of total and dissolved organic matter to the soil, which may interfere with the dynamics of pesticides in the soil. The objective of this study was to evaluate the effects of the application of total and dissolved organic matter from a biodigester and a treatment lagoon of swine wastewater in the adsorption and desorption of alachlor [2-chloro-2,6-diethyl-N(methoxymethyl acetamide)]. The assay was performed by the batch equilibrium method, and the results were fitted to the Freundlich model. The curve comparison test revealed a greater adsorption of alachlor in the soil treated with swine wastewater from the biodigester. The adsorption and desorption of alachlor increased in the soils where swine wastewater was added, and hysteresis was observed in all of the treatments.  相似文献   

16.
李丁  王济  宣斌  张雪  蔡雄飞  赵士杰  张帅 《环境工程学报》2019,13(12):2934-2944
通过室内钝化培养实验比较了羊厩肥、石灰和磷酸盐对土壤外源Pb的钝化效果和钝化修复后Pb的粒径分布特征。结果表明:3种钝化剂均能显著降低土壤中DTPA-Pb的含量,且钝化效果与钝化剂添加量成正比;磷酸盐对外源Pb钝化效果最好,P10处理下土壤中DTPA-Pb的含量降幅达80.53%,羊厩肥钝化效果最差,GM1对DTPA-Pb含量的降幅为6.51%;羊厩肥与磷酸盐将弱酸提取态Pb和可还原态Pb转变为活性更低的可氧化态Pb和残渣态Pb,以降低其活性,石灰将可还原态Pb转化为可氧化态Pb,以降低其活性;3种钝化剂添加均会提升土壤Olsen-P的含量。土壤磷淋溶临界值模型显示,当土壤Olsen-P含量>124.25 mg·kg−1时,会发生磷素淋溶现象;Pb在土壤粗砂粒、细沙粒、粉粒和黏粒中的含量差别很大,但赋存形态无明显差异,钝化剂添加会影响外源Pb在各粒级颗粒中的富集及形态分布。相关性分析结果表明,钝化剂主要通过将细沙粒、粉粒和黏粒中的可还原态Pb转化为粉粒和黏粒中的可氧化态Pb来降低土壤Pb的毒害性。研究结果可为3种钝化剂在Pb污染土壤修复中的高效利用及修复后土壤的潜在生态风险管控提供参考。  相似文献   

17.
The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO2 and O2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca(2+)-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban development has caused drastic changes in the gas content in the unsaturated zone and in groundwater. Carbon dioxide was intensively generated by nitrification-denitrification processes, by hydration of urea, to a lesser degree by oxidation of organic matter, and probably by anoxic biodegradation of organics. Between 1934 and 1948, concentrations of CO2 in unsaturated sediment air rose from 3.2% to 7.6%. In the unsaturated zone, oxygen consumption for oxidation of ammonium and organic matter lowered O2 concentrations in sediment air to unusually low values of 3.9-12.9%. Nitrification in the urban unsaturated zone could thus serve as a pump, sucking in atmospheric oxygen at a rate of about 0.3-0.5 g m-2 day-1. The extreme concentrations of CO2 and O2 in unsaturated sediments have been preserved due to production and consumption of gas under conditions of diminishing areas open to the atmosphere, uncovered by buildings and by roads.  相似文献   

18.
Four experiments were established (1992) in Scots pine stands at distances of 0.5, 2, 4 and 8 km along a line running to the SE of the Cu-Ni smelter at Harjavalta, SW Finland, in order to investigate the effects of Cu and Ni emissions on macronutrient availability and estimates of cation exchange capacity (CEC) and base saturation (BS). The accumulation of Cu and Ni (total, exchangeable) in forest soil close to the smelter has resulted in a deficit of base cations (exchangeable Ca, Mg, K and BS) in the organic layer caused by inhibition of mineralisation and the displacement of base cations from cation exchange sites by Cu and Ni cations. No signs of soil acidification were found in the topmost layers of the soil measured as a change in pH, exchangeable acidity and Al. The determination of CEC by the summation method in heavy-metal polluted forest soils is not recommended unless heavy metal cations are also included in the calculations.  相似文献   

19.
以磷酸二氢钾(PDP)钝化后的重金属污染土壤为研究对象,通过室内土柱淋溶实验,考察在pH为3.5、4.5和5.6的模拟酸雨作用下土壤Cu、Cd、Pb和P的释放特征。结果表明:PDP处理较对照处理显著增加了淋出液中pH、电导率(EC)和总有机碳(TOC)含量,但不同pH模拟酸雨对对照和PDP处理淋出液pH、EC和TOC含量影响较小。对照处理中,正磷酸盐含量维持在较低水平(0.02~0.13 mg·L-1);PDP处理下,正磷酸盐含量在1~3 L和4~12 L分别是《地表水环境质量标准》(GB 3838-2002)五类水标准(总磷含量0.4 mg·L-1)的55.1~819倍和9.46~46.6倍,对地表水表现出较大的富营养化风险。PDP处理较对照处理显著降低了淋溶初期淋出液中的Cu、Cd和Pb含量,但是随模拟酸雨pH降低,对照和PDP处理的土壤淋出液中Cu、Pb含量均未表现出显著差异。因此,PDP处理能够显著钝化污染土壤中的Cu、Cd和Pb,但需关注酸雨淋溶下过量磷释放对地表水富营养化的潜在风险。  相似文献   

20.
通过网室盆栽试验,研究了施加磷矿粉(PR)、羟基磷矿粉(HA)、豆渣(SM)、骨碳(BC)及硫酸亚铁等土壤改良剂对油菜(Brassica oleracea L.)自铀矿区污染农田土壤吸收铀(238U)、镭(226Ra)及钍(232Th)的影响.结果表明,不同处理下油菜茎叶对238U、226Ra及232Th的富集系数分别在3.6×10-3~6.2×10-3、6.2×10-3~10.0×10-3及0.9×10-4~2.0×10-4之间.上述不同改良剂处理均能在一定程度上降低植物对238U、226Ra及232Th的吸收,以SM、HA处理效果较显著,其中SM处理下238U、226Ra及232Th的富集系数分别比对照降低42.9%、39%和71%.SM及HA对降低铀矿区污染土壤中植物对上述核素的吸收和富集具有潜在的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号