首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present the effect of inorganic cations such as Na+, K+, Ca2+, Mg2+ on the salting-out phenomenon of metalaxyl from pure water to aqueous salt solutions. Moreover the 1-octanol/water partition coefficient in pure water is presented. To accomplish this, aqueous solubility of metalaxyl was determined in pure water, in different salt solution (NaCl, KCl, CaCl2 and MgCl2), and at different concentration level ranging from 0.01 to 1.5 M. The 1-octanol/water partition coefficient was determined using the static shake-flask method. Solubility was determined using dynamic saturation method for pure water in the range of 298.15-325.15 K and at 298.15 K for different salt solutions. The solubility value in pure water for studied interval was found constant (= 3.118 × 10−2 mol kg−1).Solubility values were used to calculate the standard molar Gibbs free energy of dissolution (ΔsolG°) and transfer (ΔtrG°) at 298.15 K. The values of ΔtrG° from pure to all studied aqueous salt solutions did not exceed 2 kJ mol−1, the value of ΔsolG° of dissolution is 18.5 ±0.72 kJ mol−1. The 1-octanol/water partition coefficient in pure water log Ko/w is equal to 1.69. The obtained results confirm the classification of the neutral metalaxyl as a slightly hydrophobic molecule.  相似文献   

2.
Triclosan is a chlorinated phenol ether that has been in widespread use as a broad-spectrum antibacterial agent for four decades. When compared to the limited international data available on human body burden of triclosan, results from a pooled blood study suggested that triclosan concentrations in Australia were a factor two higher than observed in Sweden. This study determined triclosan levels in individual human milk samples (n = 151) collected between 2002 and 2005 from primiparous Australian mothers. It provided the first report of population triclosan levels and individual variation in Australia and gave a measure of infant exposure via breast feeding. The distribution of triclosan concentration was positively skewed, with 7.2% of the samples below the LOQ, 66% with a concentration of less than or equal to 1.0 ng g−1 fresh weight and the remaining samples above 1 ng g−1 reaching a maximum concentration of 19 ng g−1 fresh weight. The mean and median triclosan concentrations were 1.3 ± 2.7 ng g−1 f.w. and 0.26 ng g−1 f.w., respectively. The results of this study showed high variability in triclosan concentrations between individuals and no correlations with maternal age (p = 0.094), maternal weight (p = 0.971) or infant age at the time of sample collection (p = 0.621). A large number of samples contained low or non-quantifiable concentrations of triclosan and so, in Australia, ubiquitous background exposure due to environmental sources is low. This means that body burden can be influenced by an individual’s use of triclosan containing product. Given that triclosan containing product use is continuing, it is important that monitoring in both humans and the environment is continued and that triclosan containing products are adequately labeled so that an individual can choose to avoid exposure.  相似文献   

3.
Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L−1). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L−1) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63 × 10−3 ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20 × 10−3 ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB + DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.  相似文献   

4.
5.
Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g−1 of dry cell was projected for 31.9 g L−1 sucrose and 1.3 g L−1 butyrate, and the maximum specific butanol production rate of 0.87 g d−1 g−1 of dry cell was predicted for 25.0 g L−1 sucrose and 2.6 g L−1 butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol−1 was projected for 25.0 g L−1 sucrose and 2.3 g L−1 butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol−1 when butyrate addition increased from 0 to 1 g L−1 under low sugar concentration (3.8 g L−1 sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone–butanol–ethanol fermentation.  相似文献   

6.
Contaminated food through dietary intake has become the main potential risk impacts on human health. This study investigated concentrations of rare earth elements (REEs) in soil, vegetables, human hair and blood, and assessed human health risk through vegetables consumption in the vicinity of a large-scale mining area located in Hetian Town of Changting County, Fujian Province, Southeast China. The results of the study included the following mean concentrations for total and bio-available REEs of 242.92 ± 68.98 (135.85–327.56) μg g−1 and 118.59 ± 38.49 (57.89–158.96) μg g−1 dry weight (dw) in agricultural soil, respectively, and total REEs of 3.58 ± 5.28 (0.07–64.42) μg g−1 dw in vegetable samples. Concentrations of total REEs in blood and hair collected from the local residents ranged from 424.76 to 1274.80 μg L−1 with an average of 689.74 ± 254.25 μg L−1 and from 0.06 to 1.59 μg g−1 with an average of 0.48 ± 0.59 μg g−1 of the study, respectively. In addition, a significant correlation was observed between REEs in blood and corresponding soil samples (R2 = 0.6556, p < 0.05), however there was no correlation between REEs in hair and corresponding soils (p > 0.05). Mean concentrations of REEs of 2.85 (0.59–10.24) μg L−1 in well water from the local households was 53-fold than that in the drinking water of Fuzhou city (0.054 μg L−1). The health risk assessment indicated that vegetable consumption would not result in exceeding the safe values of estimate daily intake (EDI) REEs (100−110 μg kg−1 d−1) for adults and children, but attention should be paid to monitoring human beings health in such rare earth mining areas due to long-term exposure to high dose REEs from food consumptions.  相似文献   

7.
The interaction of the phototoxic alkaloid coralyne with bovine and human serum albumins (BSA, HSA) was investigated. Absorbance and fluorescence quenching experiments revealed the formation of strong complexes. Based on the binding parameters calculated from Stern-Volmer quenching method, coralyne has higher affinity to BSA (∼105 M−1) compared to HSA (∼104 M−1). Forster resonance energy transfer studies showed that the specific binding distances between Trp (donor) of the proteins and coralyne (acceptor) were 2.95 and 3.10 nm, respectively. The bindings were favored by negative enthalpy and a stronger favorable entropy contribution. The heat capacity values for binding to BSA and HSA were similar, indicating the involvement of similar molecular forces in the complexation. Competitive binding experiments using site markers demonstrated that coralyne binds to site I (subdomain IIA) of both proteins. The secondary structure of the proteins was altered, suggesting a small but definitive partial unfolding on complexation.  相似文献   

8.

Purpose

The interaction between triclosan (TCS) and human serum albumin (HSA) was investigated in order to obtain the binding mechanism, binding constant, the type of binding force, the binding distance between the donor and acceptor, and the effect of TCS on the conformation change of HSA.

Methods

A HSA solution was added to the quartz cell and then titrated by successive addition of TCS. The fluorescence quenching spectra and synchronous spectra were recorded with the excitation and emission slits of the passage of band set at 10 and 20 nm. Three-dimensional fluorescence spectra of HSA were recorded before and after the addition of TCS. The capillary electrophoresis was conducted with the pressure injection mode at 0.5 psi for 5 s, separation under 25 kV, and detection at 214 nm.

Results

Fluorescence data indicated the fluorescence quenching of HSA by TCS was static quenching, and the quenching constants (K a ) were 1.14?×?105, 8.75?×?104, 6.67?×?104, and 5.00?×?104 at 293, 298, 303, and 309 K, respectively. The thermodynamic parameters, enthalpy change (??H) and entropy change (??S) for the interaction were calculated to be ?37.9 kJ mol?1 and 32.6 J?mol?1 K?1. The binding distance between TCS and tryptophan residues of HSA was obtained to be 1.81 nm according to F??rster nonradioactive energy transfer theory. The UV-Vis absorption spectroscopy, the synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and circular dichroism spectroscopy revealed the alterations of HSA secondary structure in the presence of TCS. Finally, the interaction between TCS and HSA was further confirmed by capillary electrophoresis.

Conclusions

TCS was bound to HSA to form the TCS-HSA complex, with the binding distance of 1.81 nm. Hydrophobic interaction and hydrogen bond were dominated in the binding. TCS could change the secondary conformation of HSA. This work provides an insight into noncovalent interaction between emerging pollutants and protein, helping to elucidate the toxic mechanism of such pollutants.  相似文献   

9.
Buth JM  Ross MR  McNeill K  Arnold WA 《Chemosphere》2011,84(9):1238-1243
Triclosan, a common antimicrobial agent, may react during the disinfection of wastewater with free chlorine to form three chlorinated triclosan derivatives (CTDs). This is of concern because the CTDs may be photochemically transformed to tri- and tetra-chlorinated dibenzo-p-dioxins when discharged into natural waters. In this study, wastewater influent, secondary (pre-disinfection) effluent, and final (post-disinfection) effluent samples were collected on two occasions each from two activated sludge wastewater treatment plants, one using chlorine disinfection and one using UV disinfection. Concentrations of triclosan and three CTDs were determined using ultra performance liquid chromatography-triple quadrupole mass spectrometry with isotope dilution methodology. Triclosan and the CTDs were detected in every influent sample at levels ranging from 453 to 4530 and 2 to 98 ng L−1, respectively, though both were efficiently removed from the liquid phase during activated sludge treatment. Triclosan concentrations in the pre-disinfection effluent ranged from 36 to 212 ng L−1, while CTD concentrations were below the limit of quantification (1 ng L−1) for most samples. In the treatment plant that used chlorine disinfection, triclosan concentrations decreased while CTDs were formed during chlorination, as evidenced by CTD levels as high as 22 ng L−1 in the final effluent. No CTDs were detected in the final effluent of the treatment plant that used UV disinfection. The total CTD concentration in the final effluent of the chlorinating treatment plant reached nearly one third of the triclosan concentration, demonstrating that the chlorine disinfection step played a substantial role in the fate of triclosan in this system.  相似文献   

10.
Persistent organic pollutants (POPs) are ubiquitous residual contaminants in the environment and in the food chain. Milk is an important matrix for monitoring POP contamination. This study determined the concentrations of POPs including polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and dioxin-like polychlorinated biphenyls (DL-PCBs) in raw bovine milk, and the data was used to estimate dietary intakes in South Korea. The average concentrations of PBDEs, HCB, PCDD/Fs, and DL-PCBs in raw milk were 0.29 ng g−1 fat, 0.50 ng g−1 fat, 0.27 pg TEQ g−1 fat, and 0.33 pg TEQ g−1 fat, respectively. No significant relationship was found between the concentrations of analytes and the regions sampled. The dietary intakes of PBDEs from the consumption of milk was calculated to be 0.26, 0.10, and 0.05 ng kg−1 bw d−1 for the group of ages 0–6, 7–12, and 13–19, respectively. The dietary intakes of HCB was calculated to be 0.44, 0.16, and 0.09 ng kg−1 bw d−1 for the group of ages 0–6, 7–12, and 13–19, respectively. The dietary intakes of PCDD/Fs and DL-PCBs was calculated to be 0.78, 0.29, and 0.16 pg TEQ kg−1 bw d−1 for the group of ages 0–6, 7–12, and 13–19, respectively. These results indicated that the residual levels of PBDEs, HCB, PCDD/Fs, and DL-PCBs in raw bovine milk were within safe levels.  相似文献   

11.
There has been recent concern regarding the possibility of antibiotics entering the aquatic food chain and impacting human consumers. This work reports experimental results of the bioconcentration of the antibiotic oxytetracycline (OTC) by the Asian watermeal plant (Wolffia globosa Hartog & Plas) and bioaccumulation of OTC in watermeal and water by the seven-striped carp (Probarbus jullieni). They show, for the first time, the extent to which OTC is able to transfer from water to plant to fish and enter the food chain. The mean bioconcentration factor (dry weight basis) with watermeal was 1.28 × 103 L kg−1. Separate experiments were undertaken to characterize accumulation of OTC by carp from water and watermeal. These showed the latter pathway to be dominant under the conditions employed. The bioconcentration and biomagnification factors for these processes were 1.75 L kg−1 and 2 × 10−4 kg g−1 respectively. Using an aqueous concentration range of 0.34–3.0 μg L−1, hazard quotients for human consumption of contaminated fish of 1.3 × 10−2 to 1.15 × 10−1 were derived.  相似文献   

12.
13.
The increased use of silver nanomaterials presents a risk to aquatic systems due to the high toxicity of silver. The stability, dissolution rates and toxicity of citrate- and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) were investigated in synthetic freshwater and natural seawater media, with the effects of natural organic matter investigated in freshwater. When sterically stabilised by the large PVP molecules, AgNPs were more stable than when charge-stabilised using citrate, and were even relatively stable in seawater. In freshwater and seawater, citrate-coated AgNPs (Ag–Cit) had a faster rate of dissolution than PVP-coated AgNPs (Ag–PVP), while micron-sized silver exhibited the slowest dissolution rate. However, similar dissolved silver was measured for both AgNPs after 72 h in freshwater (500–600 μg L−1) and seawater (1300–1500 μg L−1), with higher concentrations in seawater attributed to chloride complexation. When determined on a mass basis, the 72-h IC50 (inhibitory concentration giving 50% reduction in algal growth rate) for Pseudokirchneriella subcapitata and Phaeodactylum tricornutum and the 48-h LC50 for Ceriodaphnia dubia exposure to Ag+ (1.1, 400 and 0.11 μg L−1, respectively), Ag–Cit (3.0, 2380 and 0.15 μg L−1, respectively) and Ag–PVP (19.5, 3690 and 2.0 μg L−1, respectively) varied widely, with toxicity in the order Ag+ > Ag–Cit > Ag–PVP. Micron-sized silver treatments elicited much lower toxicity than ionic Ag+ or AgNP to P. subcapitata. However, when related to the dissolved silver released from the nanoparticles the toxicities were similar to ionic silver treatments. The presence of natural organic matter stabilised the particles and reduced toxicity in freshwater. These results indicate that dissolved silver was responsible for the toxicity and highlight the need to account for matrix components such as chloride and organic matter in natural waters that influence AgNP fate and mitigate toxicity.  相似文献   

14.
This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350 °C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H2O and CO2. The Arrhenius law data obtained for the phenol disappearance are the following: k = 1.8 × 106 ± 3.9 × 105 M−1 s−1 (pre-exponential factor) and Ea = 77 ± 8 kJ mol−1 (activation energy).  相似文献   

15.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   

16.
Eight commonly occurring polybrominated diphenyl ethers (PBDEs), including BDE 28, 47, 99, 100, 153, 154, 183, 207, and 209, were investigated in water samples from seven major inflowing rivers of Lake Chaohu to determine the distribution characteristics, potential sources and inputs to the lake. The sum of 8 BDE congeners (Σ8PBDEs) had a concentration varied from 0.31 to 84 ng L−1, with those of BDE 209, BDE 47, BDE 99, and BDE 153 being 0.31–83, <0.012–0.36, <0.012–1.3, and <0.012–0.77 ng L−1, respectively. These levels were in the high range of the global PBDEs concentrations in the water environments. The highest concentrations of Σ8PBDEs were detected in the western rivers, of which the main pollution sources were strongly related to human activities in urban centers, such as automobile-derived wastes. A sewage treatment plant was likely an important source of the lower brominated BDEs input to one western river. The correlation analyses (all < 0.05) between PBDEs and DOC, TN, TP, and EC, suggested that the distributions and sources of PBDEs in rivers might also be related with the soil erosion by heave floods. Σ8PBDEs input to Lake Chaohu from the rivers outlets was estimated at 344 kg yr−1 during the flood season. BDE 209 was the dominant contributor with an input of 340 kg yr−1, followed by BDE 99 (1.3 kg yr−1), BDE 47 (0.83 kg yr−1) and BDE 153 (0.60 kg yr−1).  相似文献   

17.
A novel nanocomposite based on incorporation of multiwalled carbon nanotubes (MWCNTs) in polyvinyl chloride (PVC) was prepared. Proposed nanocomposite was coated on stainless steel wire by deep coating. Composition of nanocomposite was optimized based on results of morphological studies using scanning electron microscopy. The best composition (83% MWCNTs:17% PVC) was applied as a solid phase microextraction fiber. Complex mixture of aromatic (BTEX) and aliphatic hydrocarbons (C5–C34) were selected as model analytes, and performance of proposed fiber in extraction of the studied compounds from water and soil samples was evaluated. Analytical merits of the method for water samples (LODs = 0.10–1.10 ng L−1, r2 = 0.9940–0.9994) and for soil samples (LODs = 0.10–0.77 ng kg−1, r2 = 0.9946–0.9994) showed excellent characteristics of it in ultra trace determination of petroleum type environmental pollutants. Finally, the method was used for determination of target analytes in river water, industrial effluent and soil samples.  相似文献   

18.
The potential of triclosan (TCS) acting as an endocrine disruptor has led to growing concern about the presence of TCS in the environment. In this study, seawater samples were collected from the German Bight during sampling campaigns conducted with the German research ships Gauss and Ludwig Prandtl. TCS was determined both in the dissolved phase and in the suspended particulate matters with concentrations ranging 0.8-6870 pg L−1 and <1-95 pg L−1, respectively. High concentrations of TCS were present in the estuaries of the Elbe and the Weser, indicating significant input of TCS by the river discharge. The correlation coefficient (R2) between the dissolved concentration and salinity was 0.79 for the data obtained from the Gauss cruise, showing an obvious declining trend from the coast to the open sea.  相似文献   

19.
Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attention and several large monitoring campaigns have been carried out to assess estrogenic contamination in the aquatic environment. The introduction of novel in vitro bioassays enables researchers to study if – and to what extent – water bodies are under the impact of less-studied (synthetic) hormone active compounds. The aim of the present study was to carry out an assessment on the presence and extent of glucocorticogenic activity in Dutch surface waters that serve as sources for drinking water production. The results show glucocorticogenic activity in the range of <LOD – 2.4 ng dexamethasone equivalents L−1 (dex EQs) in four out of eight surface waters. An exploratory time-series study to obtain a more complete picture of the yearly average of fluctuating glucocorticogenic activities at two sample locations demonstrated glucocorticogenic activities ranging between <LOD – 2.7 ng dex EQs L−1. Although immediate human health effects are unlikely, the environmental presence of glucocorticogenic compounds in the ng L−1 range compels further environmental research and assessment.  相似文献   

20.
Soil acidification has been of concern in the oil sands region in Alberta due to increased acid deposition. Using the canopy budget model, and accounting for H+ canopy leaching by organic acids, we determined sources and sinks of H+ in throughfall in jack pine (Pinus banksiana) and trembling aspen (Populus tremuloides) stands in two watersheds from 2006 to 2009. In pine stands, H+ deposition was greater in throughfall than in bulk precipitation while the opposite was true in aspen stands. The annual H+ interception deposition was 148.8-193.8 and 49.7-70.0 molc ha−1 in pine and aspen stands, respectively; while the annual H+ canopy leaching was 127.1-128.7 and 0.0-6.0 molc ha−1, respectively. The greater H+ supply in pine stands was caused by greater interception deposition of SO42− and organic acids released from the pine canopy. Such findings have significant implications for establishing critical loads for various ecosystems in the oil sands region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号