首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The utility and the safety of the extremely low frequencies (ELF) electromagnetic fields in the treatment of numerous diseases have been demonstrated. Moreover, the effects of these fields seem to depend on their respective codes (frequency, intensity, waveform). We want to value the effects and the safety of the therapeutic application of a musically modulated electromagnetic field (TAMMEF) system, which field is piloted by a musical signal and its parameters (frequency, intensity, waveform) are modified in time, randomly varying within the respective ranges, so that all possible codes can occur during a single application. Sixty subjects, affected by shoulder periarthritis were enrolled in the study and randomly divided into three groups of 20 patients each: the first exposed to TAMMEF, the second exposed to ELF, the third exposed to a simulated field. All subjects underwent a cycle of 15 daily sessions of 30 min each and a clinical examination upon enrolment, after 7 days of therapy, at the end of the cycle and at a follow-up 30 days later. All the patients of TAMMEF group and ELF group completed the therapy without the appearance of side effects: they presented a significant improvement of the subjective pain and the functional limitation, which remained stable at the follow-up examination. In those exposed to a simulated field group, there was no improvement of the pain symptoms or articular functionality. This study suggests that the TAMMEF system is efficacious and safe in the control of pain symptoms and in the reduction of functional limitation in patients with shoulder periarthritis. Moreover, the effects of the TAMMEF system cover those produced by the ELF field.  相似文献   

2.
Osteoarthritis (OA) is a chronic degenerative condition involving the joints caused by metabolic changes in chondrocytes metabolism. Treatment with magnetic fields (EMFs) produces benefits to patients affected by this pathology. The present research has the aim to investigate, by a proteomic approach, the effect of magnetic fields on cultured chondrocytes, because EMFs interferes greatly with OA chondrocytes metabolism. Human osteoarthritic chondrocytes were obtained from the femur head of osteoarthritis adult patients and were cultured under standard conditions and exposed for precise times both to extremely low-frequency (ELF; 100-Hz) electromagnetic fields and to the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEF), which are characterized by variable frequencies, intensities, and wave shapes. We tested the effects of the different exposure by 2-DE analysis and demonstrated that chondrocytes metabolism was highly influenced by the treatment with EMFs; in fact many proteins change their expression after the stimulation, but differently, depending on whether we use ELF or TAMMEF system.  相似文献   

3.
Osteoarthritis (OA) is the most common joint disorder, associated with loss of articular cartilage, osteophyte formation, subchodral bone change, synovitis and characterized by chronic and often disabling pain and stiffness of one or more joints. The pathogenesis of the disease is complex and still debated, even if recent studies have shown that reactive oxygen species may participate in the initiation and progression of OA. Moreover, it is known that pulsed electromagnetic fields are useful in the OA treatment, owing to their analgesic and anti-inflammatory properties. This work evaluated lipid peroxidation, glutathione, and ascorbic acid levels in patients with OA of spine, before and after the application of a new electromagnetic system, the TAMMEF (Therapeutic Application of a Musically Modulated Electromagnetic Field) system. In TAMMEF system, the extremely low frequencies electromagnetic field is piloted by a musical signal and its parameters (frequency, intensity, waveform) are modified in time, randomly varying within the respective ranges: so all possible codes can occur during a single application. Twenty patients affected by OA of spine and 20 healthy subjects were enrolled in this study. Plasma levels of ascorbic acid (AA), glutathione (GSH) and malondialdehyde (MDA) (as index of lipid peroxidation) were determined in patients and controls, before the beginning of treatment (first day of therapy) and at the end of cycle. All patients underwent a cycle of 10 daily sessions of 30 min each. Our study showed a significant increase of MDA level and a significant decrease of both AA and GSH levels in patients with OA compared to control group. These findings support the role of oxidative stress in the pathogenesis of OA. After TAMMEF treatment in the OA group, analysis revealed a significant decrease in plasma MDA and AA levels (P < 0.05 and P < 0.01, respectively), no significant difference in GSH levels. Reduction in MDA level could be due to the decreased generation of reactive oxygen species and/or to the increased detoxification activity mediated by GSH. No significant difference in GSH levels, evidenced in OA patients after TAMMEF treatment, could be due to effect sparing of AA on GSH. Furthermore, a beneficial symptomatic effect was observed in all patients.  相似文献   

4.
Numerous studies have demonstrated the utility of extremely low frequencies (ELF) electromagnetic fields in the treatment of pain. Moreover, the effects of these fields seems to depend on their respective codes. In our study we want to value the effects and the safety of the TAMMEF (Therapeutic Application of a Musically Modulated Electromagnetic Field) system, which field is piloted by a musical signal and its parameters are modified in time, randomly varying within the respective ranges, so that all possible codes can occur during a single application. Ninety subjects, affected by chronic low back pain, were enrolled in the study and randomly divided into three groups of 30 patients each: A exposed to TAMMEF, B exposed to ELF, C exposed to a simulated field. All subjects underwent a cycle of 15 daily sessions of 30 minutes each and a clinical examination upon enrolment, after 7 days of therapy, at the end of the cycle and at a follow-up 30 days later. All the patients of groups A and B completed the therapy without the appearance of side effects: they presented a significant improvement of the subjective pain and the functional limitation, which remained stable at the follow-up examination. In group C, there was no improvement of the pain symptoms or articular functionality. This study suggests that the TAMMEF system is efficacious and safe in the treatment of patients with chronic low back pain.  相似文献   

5.
Regulation of microcirculation and other physiological processes have strong non-linear character and involves complex of different processes, every process with own hierarchy in time and different frequencies. Traditional Fourier analysis does not provide sufficient power and resolution to elucidate characteristic of low vasomotor frequencies. Therefore, we apply a Time–frequency (wavelet) analysis on the signal obtained by Laser Doppler flow meter (LDF) at 25 healthy volunteers, exposed at the same time to low frequency electromagnetic fields, used for physiotherapy. Signal processing include Matlab based algorithms for digital signal processing (DSP) and Matlab Spectral analysis toolbox of simultaneous registered variations in Blood Pressure (BP), Laser Doppler Flow (LDF), and Intravital microscopy (IVM). It provides useful information about regulatory mechanisms and vegetative nervous system regulation of peripheral blood flow. Continuous changes in blood pressure variations and perfusion of extremities were measured prior and after 10, 20, and 30 min ELF-EMF (10, 16, 20, and 30 mT), exposure. After wavelet analysis of the blood flow signals and vasomotion changes signals, several frequency bands were distinguished: 0.0095–0.02 Hz; (α), 0.02–0.06 Hz; (β), 0.06–0.15 Hz; (γ), 0.15–0.4 Hz; (δ), and 0.4–1 Hz; (θ) for LDF data and 0.0095–0.4 Hz; (α), 0.4–0.75 Hz; (β), 0.75–0.9 Hz; (γ), 0.9–1.2 Hz; (δ), and 1.2–2 Hz; (θ) for IVM data. In this study, overlapping of some frequency bands between IVM and LDF data were found. Overlapping of the frequency bands has two ways of interpretation, one related with similarity of the structures and tissues and other related with output of ELF-EMF stimulation. We used also correlation and cross-correlation analysis to compare non-invasive (BP measurements and LDF) data, with invasive intravital microscopy (IVM) data (obtained on animals in vivo), during ELF-EMF stimulation. IVM data were used as a reference value, for certain information of possible mechanisms of biological response at the tissue and blood vessel level after ELF-EMF exposure with frequency in the range from 10 to 50 Hz and magnetic flux density of 20 mT. Comparative analysis of IVM and LDF, frequency bands show that they have statistical significant changes after ELF-EMF stimulation. Five subintervals were confirmed (α-, β-, γ-, δ-, and θ). The findings indicate that local ELF-EMF exposure at the constant temperature of the media increases skin blood flow at the upper extremities which have a contribution to the α-frequency band at IVM.  相似文献   

6.
In spite of growing concern about the influence of magnetic fields on biological systems, the interaction between extremely low frequency magnetic field (ELF magnetic fields) and biological structures at the cellular level remains obscure. The aim of this study was to investigate if 50 Hz magnetic fields could have an effect on the neuronal excitability and firing responses. Under Current-Clamp condition, exposure to 50 Hz ELF magnetic fields at 2 mT or 0.8 mT intensities resulted in an increase in the peak amplitude of action potential and after hyperpolaization potential in a time dependent manner. Both magnetic field intensities decreased also the firing frequency and the duration of action potential. Taken together, these data suggest that 50 Hz ELF magnetic fields at 2 mT or 0.8 mT intensities may change the electrophysiological behavior of neuronal cells and underlying ion channel currents.  相似文献   

7.
The effects of extremely low-frequency electromagnetic field (ELF EMF) and ELF-modulated millimeter waves (MMW) on physicochemical properties of physiological solution (PS) at different environmental medium were studied. The existence of frequency “windows” at 4 Hz and 8 Hz frequencies of ELF EMF and ELF-modulated MMW which have different effects on heat fusion period (HFP), hydrogen peroxide (H2O2) formation and oxygen (O2) content of water solution and different dependency on temperature, background radiation (BGR) and illumination was shown. The obtained data allow us to suggest that cell bathing medium serving as a target through which the biological effects of ELF EMF and ELF-modulated MMW on cells are realized is extra sensitive to environmental factors. Therefore, the variability of experimental data on EMF biological effects, obtained in different laboratories can be explained by different environmental conditions of experiments, which very often are not considered adequately.  相似文献   

8.
Articular cartilage is a complex tissue characterised by chondrocytes that are embedded within an organised dense extracellular matrix of collagen and proteoglycan. Under physiologic condition, articular metabolism is slow, but under pathological condition turnover can increase and the matrix undergoes faster mechanical failure and deterioration, resulting in cartilage degeneration. Moreover, modest damage of the articular cartilage, resulting from trauma or less invasive surgical procedure, produces an inflammatory reaction of the joint cartilage, which can cause irreversible degeneration through the increase in catabolic cytokines synthesis and the decrease in anabolic activity of chondrocytes. Pro-inflammatory cytokines increase the synthesis of matrix-degrading enzymes and limit the production of proteoglycans. It is known that physical stimuli modulate cartilage metabolism. In particular, pulsed electromagnetic fields (I-ONE therapy, Igea, Carpi, Italy) allow to treat homogenously the whole cartilage surface and thickness and the underlying subchondral bone. In vitro I-ONE therapy increases the binding between adenosine and A2A adenosine receptor on human neutrophils cell membrane, on bovine chondrocytes and on fibroblast-like synoviocytes. It has been shown that drugs with A2A adenosine receptor agonist activity prevent articular cartilage degeneration in animals. We hypothesised that the adenosine agonist effect of I-ONE therapy can also prevent cartilage degeneration. In a recent study, De Mattei et al. demonstrated how I-ONE therapy can strongly inhibit the release of PGE2 in bovine synovial fibroblasts exerting an anti-apoptotic effect on cells. Ex vitro, in bovine full thickness articular cartilage explants, I-ONE therapy induces the largest increase in proteoglycan synthesis and in IGF-1 synthesis, when cartilage is exposed to specific parameters of pulsed electromagnetic fields. These effective parameters were subsequently used in in vivo experiments. The effect of I-ONE therapy was investigated on Dunkin Hartley osteoarthritic knee by Mankin score and by histomorphometric and densitometric analysis; I-ONE therapy prevented cartilage degeneration and subchondral bone sclerosis. Osteochondral grafts were performed in the knees of sheep; I-ONE therapy favoured osteochondral grafts integration and prevented cyst-like resorption area formation, which can compromise the stability of graft and the success of the technique. To support the in vitro results, biochemical analyses of the synovial fluid were also performed in this animal model. The amount of inflammatory catabolic cytokines (IL-1β and TNF-α) in the synovial fluid of I-ONE treated animals was significantly lower than in control animals. On the contrary, TGF-β1 was significantly higher in stimulated animals than it was in controls. These results demonstrate not only the capability of I-ONE therapy to control the inflammatory reaction but also its capability to favour cartilage anabolic activity. These results provide the rational to design clinical studies to demonstrate the possibility to transfer the treatment to humans. Two randomised, prospective, double-blind clinical studies (Level I), one conducted to patients treated by arthroscopy with condroabrasion and/or perforations at the knee and the other after anterior cruciate ligament reconstruction, demonstrated that biophysical stimulation with I-ONE therapy leads to complete patient’s recovery in a significantly shorter time (P < 0.005). Moreover, a significant number of treated patients made lower use of anti-inflammatory drugs than the patients in the placebo group. We did not observe negative side effects, patient’s compliance was good and treatment was well accepted. I-ONE therapy significantly reduces patients’ recovery time, joint swelling and has a chondroprotective effect over articular cartilage. I-ONE treatment is a new therapy for the joint preservation.  相似文献   

9.
Since the late 1980s, our group has examined the effects of radiofrequency electromagnetic fields (RF-EMF), including pulse-modulated waves of the type emitted by mobile phones, upon the blood?Cbrain barrier. In more than 2,000 rats, we have repeatedly demonstrated a passage of the rats?? own albumin from the blood through the brain capillaries into the surrounding brain parenchyma at SAR values down to 0.1mW/kg. In most of these experiments, the animals were exposed in TEM-cells, ventilated by an external electrical fan at 50 Hz. In the present study, we examined whether the extremely low frequency (ELF) magnetic fields from the fan (50 Hz, 0.3?C1.5 ??T) might add to the RF effect. Sixty-four rats were divided into 4 groups: RF only, ELF only and RF + ELF exposure plus a sham group. The GSM-900 MHz RF exposure was at the very low, nonthermal, average whole-body SAR level 0.4 mW/kg. Demonstration of the normally occurring albumin extravasation in the basal hypothalamus is our inbuilt control proving that the staining is reliable. Two full series of staining of the whole material gave negative results for hypothalamus. Not until we changed to avidin, biotin, and antibodies from a third supplier, we received an acceptable staining. Twenty-five percent of the RF animals had a pathological albumin leakage, while the ELF and RF + ELF groups with three and two pathological findings, respectively, were not significantly different from the control group. We conclude that the use of external fans has had no major influence upon the result.  相似文献   

10.
The present study investigated the influence of electromagnetic fields (EMF), similar to that emitted by mobile phones, on brain activity. Ten women and ten men, matched for age and educational level, performed a short memory task (Wechsler test), with simultaneous Electroencephalogram (EEG) recordings at 15 scalp electrodes, both without (baseline) and with exposure to an 1,800 MHz signal. The EEG energy was found concentrated at the four basic EEG bands [α (8–13 Hz), β (14–30 Hz), δ (0–4 Hz), and θ (5–7 Hz)]. The analysis revealed that in the presence of EMF, the energy of the β band was significantly greater for females than for males at the majority of the electrodes. Since beta oscillation is associated with the shift of attention during the perception, these findings may indicate that the particular EMF (1,800 MHz signal) exerts an influence on this brain activity, which appears to be gender-related.  相似文献   

11.
We have earlier shown that radio frequency electromagnetic fields can cause significant leakage of albumin through the blood–brain barrier of exposed rats as compared to non-exposed rats, and also significant neuronal damage in rat brains several weeks after a 2 h exposure to a mobile phone, at 915 MHz with a global system for mobile communications (GSM) frequency modulation, at whole-body specific absorption rate values (SAR) of 200, 20, 2, and 0.2 mW/kg. We have now studied whether 6 h of exposure to the radiation from a GSM mobile test phone at 1,800 MHz (at a whole-body SAR-value of 13 mW/kg, corresponding to a brain SAR-value of 30 mW/kg) has an effect upon the gene expression pattern in rat brain cortex and hippocampus—areas where we have observed albumin leakage from capillaries into neurons and neuronal damage. Microarray analysis of 31,099 rat genes, including splicing variants, was performed in cortex and hippocampus of 8 Fischer 344 rats, 4 animals exposed to global system for mobile communications electromagnetic fields for 6 h in an anechoic chamber, one rat at a time, and 4 controls kept as long in the same anechoic chamber without exposure, also in this case one rat at a time. Gene ontology analysis (using the gene ontology categories biological processes, molecular functions, and cell components) of the differentially expressed genes of the exposed animals versus the control group revealed the following highly significant altered gene categories in both cortex and hippocampus: extracellular region, signal transducer activity, intrinsic to membrane, and integral to membrane. The fact that most of these categories are connected with membrane functions may have a relation to our earlier observation of albumin transport through brain capillaries.  相似文献   

12.
Occupational exposure to radiofrequency (RF) and static magnetic fields at magnetic resonance imaging (MRI) suites is of continuing concern to personnel who routinely work in this environment. Questions regarding the levels of occupational RF and static field exposure have increased with the increasing demand for anesthetics to be administered in this environment. The present study was thus designed towards addressing the above-mentioned problem by gaining information regarding exposure levels of clinical personnel at MRI units in South Africa. Three 1.5 MRI units in Bloemfontein, South Africa were utilized to evaluate the exposure of clinical personnel to the electromagnetic fields present in the MRI environment over a period of time and during different clinical MRI procedures. Three rounds of measurements of RF fields in the MRI environment were done. All the three measurement rounds were focused on the low frequencies, 5 Hz–32 kHz, as well as on the high frequencies, 300 kHz–40 GHz. First round measurements were done to establish the background of the RF fields in and around the magnet room during an MRI examination. Second round RF field measurements were done at a specific location, 1 m away from the bore on the right-hand side of the bed, in the MRI room. The third round measurements were of the same format as the second round, but the specific location was against the magnet bore. Two pieces of Narda Safety Test Solution instruments, the EFA-300 and EMR-300, were used to measure the electromagnetic and magnetic exposure fields generated from the MRI scanners. Results of the measurements indicate that the electromagnetic fields measured during different clinical procedures do not exceed the International Commission on Non-Ionizing Radiation Protection (2000) guidelines in these units. Results from round two and three showed that the RF and gradient exposure 1 m and up against the bore entrance does not exceed these guidelines (rms average over 6 min). Ongoing new developments in MRI scanning create the need for continuously monitoring exposure of patients and workers to the EMF fields in the MRI environment.  相似文献   

13.
Authors review the importance of studying the effects of electromagnetic fields (EMF) on microcirculatory system, especially in respect of possibility that vasculature may have direct and indirect role in interaction of static magnetic fields (SMF). We outline the physiological importance of microcirculation and relatively new methods of evaluation technique in vivo and explain in details the local and/or whole body exposure effects of SMF with␣range of 0.3–180 mT, power frequency EMF with range of 0.1–30 mT and microwaves at 1.5 GHz with range 0.08–8 W/kg brain average specific absorption rate (SAR) on microcirculatory systems in different tissues in experimental animals.  相似文献   

14.
Summary The effects of electromagnetic fields (EMF) emitted by cellular phones on human electroencephalogram (EEG) were studied during an auditory memory task. The experimental method and the experimental setup are introduced as a credible measurement method of EEG. 19 normal subjects (10 women and 9 men) performed the memory task both with and without exposure to a 900 MHz signal, emitted by a dipole antenna placed near the subjects' head. The energy of the EEG signals was calculated at the time domain. A Fourier transform of the EEG signals was done and the EEG energy was also calculated at the frequency domain. As the Parseval's theorem anticipates the energies were identical. The EEG energy was found concentrated at the four basic bands (α (8–13 Hz), β(14–30 Hz), δ (0–4 Hz) and θ(5–7 Hz)). The primary concern of the present study was the gender related influence of EMF on the spectral energy of EEG. The results show evidence of a strong gender—radiation interaction effect on the EEG energy and on the peak amplitudes within each of the four rhythms. Without radiation the spectral power of males is greater than of females, while under exposure the situation is reversed. Under the influence of EMF the spectral power of the males EEG is decreased while that of the females is increased. In conclusion both the baseline EEG and the changes effected to the EEG power spectrum under the influence of EMF seem to be gender dependent.  相似文献   

15.
Summary Since IARC classified ELF magnetic field as Possibly Carcinogenic to Human the fear from 50/60 Hz magnetic field exposure had been increased to the state of public “panic”. Subsequently, environment quality preservation organizations increased their pressure on their government to adopt the “precautionary principle” and to reduce the allowable ELF Magnetic Field exposure to much lower values than are recommended by ICNIRP-1998. As an example the present Environmental Ministry in Israel recommendation is to lower the ELF Field exposure to 10 mG averaged over 24 h. As a result of this stringent exposure guideline imposed by the government, electrical engineers who are involved in the deployment and installation of large and medium electrical utilities, such as overhead power lines, transformers, UPS systems, electrical public transportation, switching stations, etc., are much more aware to the need to employ special measures and methods for reducing the magnetic fields that might be emitted from such utilities. There are few computer codes that are capable of analyzing with great accuracy magnetic and electric fields surrounding single phase and three phase electrical utilities in a 3-D system. The best presentations of the analysis results are by equi-value contours depicting electric and magnetic fields. This graphical presentation is a powerful design tool that enables better deployment and installation design aided to reduce the magnetic field emissions from high-power electrical utilities. This paper describes the various types of graphical presentations available for ELF field contours, the dependent and independent variants and parameters, magnetic field animation for optimization of power line installation and routing, and finally an example that demonstrates the usefulness of the graphical presentation tools.  相似文献   

16.
Over the last years, a wide debate has developed on the possible health effects of exposure to electromagnetic fields. In-depth research activity was therefore developed by the international scientific community aimed at evaluating the risk associated with exposure to this type of radiation. At the same time, various international institutions began to issue recommendations on exposure limits valid for workers and for the population in the frequency range up to 300 GHz. Most of the recently revised safety standards worldwide are set in terms of internal rates of electromagnetic energy deposition (Specific Absorption Rate) at radiofrequency and microwave frequencies, and of induced electric fields or current densities at lower frequencies up to 10 MHz. At the international level, the most authoritative guidelines have been developed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP); another internationally well recognized standard is that developed by the Institute of Electrical and Electronics Engineers (IEEE) in the USA, adopting the same basic approach of ICNIRP, although with some differences in numerical values. This article is mainly focused on the analysis of different approaches for the protection against electromagnetic fields, and on the rationale of most relevant standards.  相似文献   

17.
The new recommendations of WHO and EC for legislation in Europe and other countries concerning non-ionizing radiation (NIR) health and safety include exposure limits that are very debatable. ICNIRP Guidelines propose exposure limits for electromagnetic fields in the frequency range up to 300 GHz based on short-term exposures and on thermal effects. The new EC proposal for optical and laser safety legislation includes classification of sources of radiation—both lasers and other optical sources, but not requirements for the methodology of classification. On the other hand, many new requirements have been set by the WHO publication “Model Legislation for EMF Protection” concerning the responsibilities in the field of EMF health and safety. Many specialists in the field of developing exposure limits have positions very far away from the proposed of the ICNIRP Guidelines philosophy. The results are different approaches in developing standards and exposure limits, and differences more than 100 times in maximal permissible levels. We, the Bulgarian Program Committee on NIR, try to organize working groups and discuss different philosophy for developing exposure limits for more than 10 years. This paper exposes our position in this area.  相似文献   

18.
Age dependency of [3H]-ouabain binding, 45Ca2+ eflux and its magnetosensitivity in rats’ brain cortex and heart muscle tissues were studied. Curves of dose-dependent [3H]-ouabain binding consisted of three components with different affinities (10−7–10−4 M (α1); 10−9–10−7 M (α2); and 10−11–10−9 M (α3)). These curves were also characterized by different dose-dependent kinetics. [3H]-ouabain binding with α3 receptors in brain cortex and heart muscle tissues of young and adult animals had a dose-dependent character, while that in old ones had a dose-independent character. A 0.2 T static magnetic field (SMF) exposure had modulation effect on ouabain binding with α1, α2 and α3 receptors in young rats, while in adult ones, only α3 receptors were magnetosensitive. In old animals, SMF exposure had no significant effect on ouabain binding with α3 receptors in brain cortex, while in heart muscle, it had inhibitory effect on it. Age-dependent effect of ouabain impact on 45Ca2+ efflux showed that all concentrations of ouabain lead to inhibitory effect in young animals’ brain cortex and heart muscle (with the exception of 10−10 and 10−6 M), while in old ones, it had activation effect as compared with data received without ouabain. SMF exposure in young animals had activation effect on 45Ca2+ efflux from brain cortex and heart muscle in data without ouabain, and in old rats, 45Ca2+ efflux from brain cortex was magnetic insensitive. In old animals, SMF increased 45Ca2+ efflux even after extra low concentration of ouabain. It is suggested that α3 receptors having a crucial role in the regulation of Na+/Ca2+ exchange serve as age-dependent magnetosensors of excitable cells.  相似文献   

19.
The meltdown and release of radioactivity (ionizing radiation) from four damaged nuclear reactors at the Fukushima Nuclear Facility in Japan in March 2011 continues to contaminate air and ocean water even 1 year later. Chronic exposure to low-dose ionizing radiation will occur over large populations well into the future. This has caused grave concern among researchers and the public over the very long period of time expected for decommissioning alone (current estimate from official sources is 30–40 years based on TEPCO in Mid-and long-term roadmap towards the decommissioning of Fukushima Daiichi nuclear power units 1–4, 2011) and the presumed adverse effects of chronic, low-dose ionizing radiation on children, adults and the environment. Ultimately, radioactive materials from Fukushima will circulate for many years, making health impacts a predictable concern for many generations (Yasunari et al. in PNAS 108(49):19530–19534, 2011). There is long-standing scientific evidence to suggest that low-dose ionizing radiation (LD-IR) and low-intensity non-ionizing electromagnetic radiation (LI-NIER) in the form of extremely low-frequency electromagnetic fields and radiofrequency radiation (RFR) share similar biological effects. Public health implications are significant for reconstruction efforts to rebuild in post-Fukushima Japan. It is relevant to identify and reduce exposure pathways for chronic, low-dose ionizing radiation in post-Fukushima Japan given current scientific knowledge. Intentional planning, rather than conventional planning, is needed to reduce concomitant chronic low-intensity exposure to non-ionizing radiation. These are reasonably well-established risks to health in the scientific literature, as evidenced by their classification by World Health Organization International Agency for Research on Cancer as Possible Human Carcinogens. Reducing preventable, adverse health exposures in the newly rebuilt environment to both LD-IR and LI-NIER is an achievable goal for Japan. Recovery and reconstruction efforts in Japan to restore the communications and energy infrastructure, in particular, should pursue strategies for reduction and/or prevention of both kinds of exposures. The design life of buildings replaced today is probably 35–50 years into the future. Cumulative health risks may be somewhat mitigated if the double exposure (to both chronic low-dose IR from the Fukushima reactors and LI-NIER [EMF and RFR] in new buildings and infrastructure) can be dealt with effectively in early planning and design in Japan’s reconstruction.  相似文献   

20.
Although the biological effect of non-ionizing (NIR) and ionizing radiation (IR) on plant seed potential is well documented, the mechanism of this impact is not clear yet. Since cell hydration, a fundamental parameter for determining cell function, is magneto-sensitive, in present work, a comparative study of extremely low frequencies (ELF) electromagnetic field (EMF), ELF EMF-modulated millimeter waves, and radiation exposure effects on winter wheat seeds water absorption and dry mass changes was performed. The seeds were incubated in physiological solutions (PS) for 2 and 72 h. In case of 2-h incubation, the water absorption determined by osmotic gradients between seeds and bathing medium, PS treated by all these factors leads to changes of water absorption. While in case of 72-h incubation (when germination processes are in active state) these impact had reversed character. The obtained data strongly suggest seeds bathing medium as a target through which the biological effects of NIR and IR are realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号