首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa?=?0.88) for 1990 and 85 % (kappa?=?0.81) for 2009. It was found that the city has expanded over 42.75 km2 within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5?±?2.6 °C increase in land surface temperature, vegetation to fallow 6.7?±?3 °C, fallow to built-up is 3.5?±?2.9 °C and built-up to dense built-up is 5.3?±?2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N–S and NE–SW profiles.  相似文献   

2.
This study aimed to analyze the impact of Zayandehrood Dam on desertification using the spatio-temporal dynamics of land use/land cover (LULC) and land surface temperature (LST) in an arid environment in central Iran from 1987 to 2014. The LULC and LST images were calculated from Landsat TM, ETM+, and OLI data, and their accuracies were assessed against reference data using error matrix and linear regression analysis. Results showed that salty and bare lands increased up to 57,302 ha, while agricultural lands declined substantially (28,275.58 ha) in the region. The changes in LULC classes resulted in dramatic variations in LST values. The average temperature showed a 5.03 °C increase, and the minimum temperature increased by 5.66 °C. LST had an increasing trend in bare lands (8.74 °C), poor rangelands (6.8 °C), agricultural lands (9.46 °C), salty lands (9.6 °C), and residential areas (3.18 °C) in this 27-year period. Rainfall and temperature trend analysis revealed that the main cause of these extreme changes in LULC and LST was largely attributed to the drying up of Zayandehrood River due to dam construction and allocating water mainly for industrial sectors. Results indicate that in addition to LULC changes, the spatio-temporal variations of LST can be used as an effective index in desertification assessment and monitoring in arid environments.  相似文献   

3.
The Three-North Shelter Forest Program is the largest afforestation reconstruction project in the world. Remote sensing is a crucial tool to map land use and land cover change, but it is still challenging to accurately quantify the change in forest extent from time-series satellite images. In this paper, 30 Landsat MSS/TM/ETM+ epochs from 1974 to 2012 were collected, and the high-quality ground surface reflectance (GSR) time-series images were processed by integrating the 6S atmosphere transfer model and a relative reflectance normalization algorithm. Subsequently, we developed a vegetation change tracking method to reconstruct the forest change history (afforestation and deforestation) from the time-series Landsat GSR images based on the integrated forest z-score (IFZ) model by Huang et al. (2009a), which was improved by multi-phenological IFZ models and the smoothing processing of IFZ data for afforestation mapping. The mapping result showed a large increase in the extent of forest, from 380,394 ha (14.8 % of total district area) in 1974 to 1,128,380 ha (43.9 %) in 2010. Finally, the land cover and forest change map was validated with an overall accuracy of 89.1 % and a kappa coefficient of 0.858. The forest change time was also successfully retrieved, with 22.2 % and 86.5 % of the change pixels attributed to the correct epoch and within three epochs, respectively. The results confirmed a great achievement of the ecological revegetation projects in Yulin district over the last 40 years and also illustrated the potential of the time-series of Landsat images for detecting forest changes and estimating tree age for the artificial forest in a semi-arid zone strongly influenced by human activities.  相似文献   

4.
The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1—urban fabric, 2—industrial, commercial and transport units, 3—heterogeneous agricultural areas, 4—forests, and 5—inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.  相似文献   

5.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

6.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

7.
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.  相似文献   

8.
This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites’ land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.  相似文献   

9.
This study aimed to assess the impacts of climate change on residential energy consumption in Dhaka city of Bangladesh. The monthly electricity consumption data for the period 2011–2014 and long-term climate variables namely monthly rainfall and temperature records (1961–2010) were used in the study. An ensemble of six global circulation models (GCMs) of coupled model intercomparison project phase 5 (CMIP5) namely, BCCCSM1-1, CanESM2, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, and NorESM1-M under four representative concentration pathway (RCP) scenarios were used to project future changes in rainfall and temperature. The regression models describing the relationship between historical energy consumption and climate variables were developed to project future changes in energy consumptions. The results revealed that daily energy consumption in Dhaka city increases in the range of 6.46–11.97 and 2.37–6.25 MkWh at 95% level of confidence for every increase of temperature by 1 °C and daily average rainfall by 1 mm, respectively. This study concluded that daily total residential energy demand and peak demand in Dhaka city can increase up to 5.9–15.6 and 5.1–16.7%, respectively, by the end of this century under different climate change scenarios.  相似文献   

10.
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (?42.6 % pasture/grassland and ?57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.  相似文献   

11.
This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16?×?106 RMB Yuan in 1989 to 3,697.42?×?106 RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.  相似文献   

12.
Istanbul is the most populated city of Turkey with a population of around 10.58 M (2000) living on around 5,750 km2. In 1980, the population was only 4.7 M and then it has been more than doubled in only two decades. The population has been increasing as a result of mass immigration. An urbanization process continues and it causes serious increases in urban areas while decreasing the amount of green areas. This rapid, uncontrolled, and illegal urbanization accompanied by insufficient infrastructure has caused degradation of forest and barren lands in the metropolitan area, especially through the last two decades. The watershed basins inside the metropolitan area and the transportation network have accelerated the land-cover changes, which have negative impacts on water quality of the basins. Monitoring urban growth and land cover change will enable better management of this complex urban area by the Greater Istanbul Metropolitan Municipality (GIMM). A temporal assessment of land-cover changes of Istanbul has been documented in this study. The study mainly focuses on the acquisition and analysis of Landsat TM and Landsat GeoCover LC satellite images reflecting the significant land-cover changes between the years of 1990 and 2005. Raster data were converted to vector data and used in Geographic Information Systems (GIS). A database was created for Istanbul metropolitan area to plan, manage, and utilize statistical attribute data covering population, water, forest, industry, and topographic position. Consequently an overlay analysis was carried out and land use/cover changes through years have been detected for the case study area. The capability of Landsat images in determining the alterations in the macro form of the city are also discussed.  相似文献   

13.
Repetitive armed conflicts may be directly and indirectly responsible for severe biophysical modification to the environment. This, in turn, makes land more susceptible to degradation. Mapping and monitoring land degradation are essential for designing and implementing post-conflict recovery plans and informed policy decisions. The aim of this work was to evaluate the effect of repetitive armed conflicts on land degradation along the coastal zone of North Lebanon using multi-temporal satellite data. The specific objectives were to (1) identify a list of indicators for use in conjunction with satellite remote sensing, (2) monitor land cover change throughout repetitive events of armed conflicts and (3) model the effect of repetitive armed conflicts on land degradation. The methodology of work comprised the use of multi-temporal Landsat images and literature review data in GEographic Object-Based Image Analysis (GEOBIA) approach. The work resulted in the development of (1) a list of indicators to be employed, (2) land cover change detection maps with the use of multi-temporal Landsat images and, consequently, a fire risk associated with changes in vegetation cover throughout repetitive armed conflict events, and (3) an integrated approach for modelling the effect of repetitive armed conflicts on land degradation with the use of a composite land degradation index (CLDI). The final synthetic map showed four classes of exposure to land degradation associated with repetitive armed conflicts. Data collected from field visits showed that the final classification results highly reflected (average of 90 %) the effect of repetitive armed conflicts on the different classes of exposure to land degradation.  相似文献   

14.
Demographic change and economic decline produce modified urban land use pattern and densities. Compared to the beginning of the 90s after the German reunification, nowadays massive housing and commercial vacancies followed by demolition and perforation come to pass in many cities of the former GDR. In consequence, a considerable surplus of urban brownfields has been created. Furthermore, the decline in the urban fabric affects social infrastructure and urban greenery of local neighbourhoods. Here, urban planning enters into ‘uncharted territory’ since it needs to assess the socio-environmental impact of shrinkage.In order to carry out such an evaluation quantitatively, a multi-criteria assessment scheme (MCA) was developed and applied. Firstly, we identified infrastructure and land use changes related to vacancy and demolition. Secondly, demolition scenarios for the coming 20 years were applied in order to give an idea for a long-term monitoring approach at the local district level. A multi-criteria indicator matrix quantifies the socio-environmental impact on both urban greenery and residents. Using it, we set demolition scenarios against urban ‘quality of life’ targets. Empirical evidence comes from Leipzig, in eastern Germany, a representative case study for urban shrinkage processes.The results show that shrinkage implies socio-environmental changes of residential livelihoods, however, does not simply increase or decrease the overall urban quality of life. The integrated assessment of all indicators identifies environmental and social opportunities, as well as the challenges a shrinking city is faced with.  相似文献   

15.
Landscape changes taking place from 1954 to 1992 in the muncipal district of Isernia city (Central Italy) were described in relation to a system of ecosystem classification. Isernia municipal district was selected for study because recent historic changes in this area represent a typical example of landscape transformation similar to many small cities of Italy and other Mediterranean countries. To assess overall changes, three land cover maps (scale 1:25,000) were derived from panchromatic aerial photographs and field surveys. These were then digitalised in a Geographic Information System. A Land Facet (LF) map was derived by combining a phytoclimatic, a lithostatigrafic and a topographic map, and then digitalised as data layers in the same GIS. Results demonstrated two main landscape transformation trends: forest and semi-natural areas increased (8%), whereas agricultural areas decreased (12%). The urban area was relatively small during the entire analysed period, growing from 1% in 1954, to just 5% in 1992. Forest coverage was significant on reliefs, on hillside ecosystems such as limestone and on clay and marl hills LF. Arable land was particularly significant in flat ecosystems with deeper soils, such as on recent alluvial plain LF. These temporal changes were interpreted as being related to the replacement of traditional farming methods (grazing pastures) with more intensive methods (crop fields), especially on alluvial plains.  相似文献   

16.
Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8’s spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82 %, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation.  相似文献   

17.
This study assessed land cover (LC) changes in Kahramanmara? (K.Mara?) and its environs by using multitemporal Landsat and ASTER imagery, respectively belong to 1989, 2000 and 2004. A priori defined nine land cover classes in the classification scheme were urban and built-up, forest, sparsely vegetated areas, grassland, vegetated stream beds, unvegetated stream beds, bare areas, crop fields, and water bodies. Individual classifications were employed using the combination of both unsupervised and supervised classification methods. Iterative Self Organizing Data Analysis (ISODATA) was used to reduce spectral variation in the scenes arising from complex pattern of crop fields. Maximum Likelihood classifier was used in the LC classification of the individual images. Image pairs of consecutive dates were compared by overlaying the thematic LC maps and cross-tabulating the LC statistics. Urbanization and expansion of agriculture were the major reasons for the dramatic LC conversions. The amount of conversion from crop fields to water occurred as large as 927.67 ha, accounting for 73% of the total land-to-water conversion. Conversions to agriculture have mainly been occurred from grasslands and sparsely vegetated areas as large as 1,314.95 and 1,325.84 ha, respectively. Urban coverage doubled in this period as a result of 1,443.45 ha of increase. Urban area increased in the second period from 2,920 to 3,526 ha. Conversions to agriculture occurred at high amounts. A total of 1,075.79 ha area changed from sparsely vegetated areas to crop fields. A landscape-level environmental monitoring scheme based on satellite remote sensing was proposed for effective environmental resource management.  相似文献   

18.
This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.  相似文献   

19.
Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.  相似文献   

20.
This paper assesses the image differencing technique for the Normalized Difference Vegetation Index (NDVI), the second principal component (PC2), and the TM 4 band (TM 4), as well as the post-classification comparison (PCC) in order to analyze the land use/land cover changes in the South-East Transilvania, Romania. The analysis was performed using two frames from Landsat 5 TM satellite images acquired on August 5, 1993 and July 24, 2009. After applying the NDVI, PC2, and TM 4 image differencing techniques, the images obtained were transformed into change/no change maps. The thresholds identified to highlight the changes were set at 0.6 s for NDVI and 0.7 s for PC2 and TM 4. Before applying the PCC technique, the satellite images were classified through the supervised classification method. The overall accuracy obtained was 85.91 % and the kappa statistics 0.8249 for 1993, 88.18 % and 0.8497 for 2009, respectively. The assessment of the changes detection methods in the studied area shows that the first place is occupied by NDVI image differencing with an overall accuracy of 83.80 %, followed by PCC method with 83.20 %, PC2 difference with an overall accuracy of 81.60 %, and TM 4 difference with an overall accuracy of 79.40 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号