首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   

2.
Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh < 200 mV), with a neutral pH and low concentration in toxic metals; nevertheless, they varied widely in the soil and its quality-defining parameters (e.g., clay contents, total organic carbon, Fe, Al, toxic trace metals). It is noteworthy that the mangroves presented a low FePyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.  相似文献   

3.
Phosphorus (P) fractions and the effect of phytoremediation on nitrogen and phosphorus removal from eutrophicated water and release from sediment were investigated in the eco-remediation experiment enclosures installed in the Hua-jia-chi pond (Hangzhou city, Zhejiang province, China). The main P fraction in the sediment was inorganic phosphorus (IP). For the mesotrophic sediments, IP mainly consisted of HCl-extractable P (Ca-P). The annual-average concentration of total nitrogen (TN), total phosphorus (TP) in water and the content of TN, TP in different vertical depth of sediment in the experiment enclosures with hydrophyte were always much lower than those in the control enclosure without hydrophyte and those outside of experiment enclosures. It is suggested that phytoremediation was an effective technology for N and P removal from eutrophicated water and release from sediment.  相似文献   

4.
Traditional statistics, geostatistics, fractal dimensions, and geographic information systems (GIS) were employed to study the temporal?Cspatial variability of soil total nitrogen (TN) and total phosphorus (TP) levels in Xinji District, Hebei Province area of the North China Plain from 1980 to 2007. The results indicate that nutrient levels follow normal or lognormal distributions. The TN content was 0.59 ±0.155 g kg???1 in 2007, an increase of 0.44 g kg???1 compared with that of 1980. In 2007, the TP content was 1.21 ±0.227 g kg???1, an increase of 0.01 g kg???1 from 1980. The geostatistical analysis showed that the distribution of these soil nutrients in the study area exhibits a trend and anisotropy. The range and [C 0/(C 0?+?C)] of TN and TP in 1980 were all less than in 2007. The ordinary kriging interpolation method was used to analyze the nutrient contents differences between 1980 and 2007. The results indicate that soil TN levels have increased over the 27-year period, and the area where the TN level had increased by at least 0.4 g kg???1 was about 61.7% of the district. The area where the TP content increased covered about 58.4% of the district. The variance analysis indicated that land-use type had a clear influence on the distribution and change in TN and TP content. Using the 3-D box-counting dimension method combined with GIS, the fractal dimension of soil nutrient spatial distribution over the two periods showed that in 27 years, the fractal dimension of TN increased from 1.95 to 2.02, and the fractal dimension of TP increased from 1.89 to 2.01, indicating that the complexity of the spatial distribution of all nutrient contents had increased. This study can provide a basis for accurate fertilizing and to enhance the conversion of soil characteristics under different spatial scales.  相似文献   

5.
Earlier studies by the authors on English soils under grassland strongly supported their hypothesis that soil/plant systems have naturally evolved to conserve nitrogen (N) by having a close match between the dynamics of mineral-N production in soils and the dynamics of plant N requirements. Thus, maximum mineral-N production in soils occurred in spring when plant N requirements were greatest and were very low in mid to late summer. Low temperature and a high C:N ratio of senescing material helped to conserve N in winter, but mobile N was associated with pollution inputs. We test the hypothesis that under the much more arid conditions of Pakistan, soil/plant systems naturally have evolved to conserve mineral-N, especially over the very dry and cooler months between October and February. When soils from a grassland site were incubated at ambient temperatures after removal of plant roots and exclusion of atmospheric N inputs, there was consistent evidence of immobilization of nitrate and immobilization and possibly volatilization of ammonia/ammonium. In the wetter months of July and August, the soil at 0–10 cm depth showed no evidence of significant ammonium-N production in July and only small ammonium production at 10–20 cm depth in August, but was associated with significant nitrate-N immobilization in August. Nitrate leaching only appeared likely towards the end of the rainy season in September. The results strongly suggest that, under grass, the retention of atmospheric N inputs over the long dry periods is regulating the pools of available N in the soils, rather than the N produced by mineralization of soil organic matter.  相似文献   

6.
Increased dissolved inorganic carbon (DIC) enhances the mobilization of metals and nutrients in soil solutions. Our objective was to investigate the mobilization of Al, Ca, Fe, and P in forest soils due to fluctuating DIC concentrations. Intact soil cores were taken from the O and B horizons at the Bear Brook Watershed in Maine (BBWM) to conduct soil column transport experiments. Solutions with DIC concentrations (~20–600 ppm) were introduced into the columns. DIC was reversibly sorbed and its migration was retarded by a factor of 1.2 to 2.1 compared to the conservative sodium bromide tracer, corresponding to a log K D?=???0.82 to ?0.07. Elevated DIC significantly enhanced the mobilization of all Al, Fe, Ca, and P. Particulate (>0.4 μm) Al and Fe were mobilized during chemical and flow transitions, such as increasing DIC and dissolved organic carbon (DOC), and resumption of flow after draining the columns. Calcium and P were primarily in dissolved forms. Mechanisms such as ion exchange (Al, Fe, Ca), ligand- and proton-promoted dissolution (Al and Fe), and ligand exchange (P) were the likely chemical mechanisms for the mobilization of these species. One column was packed with dried and sieved B-horizon soil. The effluent from this column had DOC, Al, and Fe concentrations considerably higher than those in the intact columns, suggesting that these species were mobilized from soil’s microporous structure that was otherwise not exposed to the advective flow. Calcium and P concentrations, however, were similar to those in the intact columns, suggesting that these elements were less occluded in soil particles.  相似文献   

7.
The temporal changes and spatial variability of phosphorus andnitrogen losses and concentrations in Finland during the period1981–1997 were studied in 15 small agricultural and forestedcatchments. In addition, four coastal river basins with highagricultural land use located in southern Finland were includedin the study in order to assess the representativeness ofagricultural loss estimates from small agricultural catchments.The mean annual loss specific for agricultural land was estimatedto be on average 110 kg km-2 a-1 for total phosphorusand 1500 kg km-2 a-1 for total nitrogen. The resultsfrom small agricultural catchments were in agreement with thecorresponding loss estimates from rivers, with an average of137 kg km-2 a-1 for total phosphorus and 1800 kg km-2a-1 for total nitrogen. The results from the studiedagricultural catchments and rivers during the period 1981–1997suggest that weather-driven fluctuation in discharge was usuallythe main reason for changes in nutrient losses, and little or noimpact of changes in agricultural production or managementpractises can be observed. In forested areas the total phosphorusloss (average 9 kg km-2 a-1) and total nitrogen loss(average 250 kg km-2 a-1) were lower than inagricultural areas. In forested catchments the impact of forestryoperations, such as clear-cutting and fertilization, and theimpact of atmospheric nitrogen deposition can be seen in changesin nutrient losses.  相似文献   

8.
Brominated flame retardants (BFRs) are widely used in plastics, textile coatings, electrical appliances and printed circuit boards to prohibit the development of fires. In order to investigate how exposure to BFRs is related to specific occupations, samples were obtained from Norwegian individuals working at an electronics dismantling facility, in the production of printed circuit boards, or as laboratory personnel. Nine BFRs were quantified in the plasma samples: 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153), 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154), 2,2',3,4,4',5',6-heptabromodiphenyl ether (BDE-183), 2,4,6-tribromophenol (TriBP) and tetrabromobisphenol A (TBBP-A). The BFRs were extracted from plasma using solid-phase extraction (SPE). The plasma lipids were decomposed by treatment with concentrated sulfuric acid directly on the SPE column, prior to the elution of the BFRs. Following diazomethane derivatization, the samples were analysed by gas chromatography-electron capture mass spectrometry. The subjects working at the electronics dismantling plant had significantly higher plasma levels of TBBP-A and BDE-153 compared to the other groups, and the heptabrominated congener BDE-183 was only detected in plasma from this group. TriBP was generally the most abundant BFR present, and the plasma concentrations were in the range 0.17-81 ng g-1 lipids. BDE-47 was the dominant BDE congener in all the individual samples and the levels were in the range 0.43-14.6 ng g-1 lipids. The total amounts of the seven BDEs were 8.8, 3.9 and 3.0 ng g-1 lipids for the group of electronics dismantlers, circuit board producers and laboratory personnel, respectively. Generally, large variations in the individual concentration levels were found within the groups, especially in the group of electronics dismantlers, where the relative standard deviations for BDE concentrations were in the range 23-164%. The levels of BFRs were not correlated to age or the level of 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153). The present work indicates that the population in Norway is exposed to several BFRs, probably with food as a major source. The elevated level of higher brominated BDEs and TBBP-A in the plasma from the workers at the dismantling plant suggests an additional occupational exposure for these individuals. Thus, human exposure to BFRs seems to originate from a combination of different sources; however, further studies investigating plasma samples from a larger number of individuals are necessary for a more complete assessment of human exposure pathways to these environmental contaminants.  相似文献   

9.
To further understand the mechanism of bioavailable total P (BAP) and bioavailable dissolved P (BDP) transport by overland and subsurface flow, we exposed a runoff plot 4.5 m long × 1.5 m wide × 0.6 m deep to simulated and natural rainfall in order to study the effects of rainfall type, rainfall intensity, and vegetation cover on BAP and BDP transport. The results showed that vegetation cover could alleviate the discharge of overland flow and sediment transport and enhance subsurface flow. BAP transport significantly increased with elevated rainfall intensity. Vegetation cover reduced the BAP transport by overland flow and increased it by subsurface flow. BDP transport showed no significant relationship with vegetation cover and rainfall type. The bioavailable particulate P (BPP) transport by overland flow contributed to no less than 90% by weight of total BAP, and the BPP transport by subsurface flow contributed to no less than 60% by weight of total BAP. Short-time heavy rainfall caused more BAP transport and accelerated non-point source pollution.  相似文献   

10.
Nitrogen (N) leaching has become a matter of worldwide concern. The objectives of this study were: (1) to use soil columns to investigate the leaching of nitrate ( $ {\text{NO}}_3^{ - } $ ), ammonium ( $ {\text{NH}}_4^{ + } $ ), and nitrite ( $ {\text{NO}}_2^{ - } $ ) from calcareous soils that had received an average of 200?kg?1 N?ha?1?year?1 for the previous 30?years and (2) to determine the relationship between soil properties and $ {\text{NO}}_3^{ - } $ , $ {\text{NH}}_4^{ + } $ , and $ {\text{NO}}_2^{ - } $ leaching. The soils used in this study ranged in texture from clay to sandy loam. Leaching experiments were conducted under saturation conditions and consisted of the collection of 1,047–2,524?mL of leachate (12 pore volumes (PVs)), which was equivalent to 534–1,286?mm from rainfall or irrigation. Losses of $ {\text{NO}}_3^{ - } $ ranged from 62 to 437?kg?ha?1, while losses of $ {\text{NH}}_4^{ + } $ and $ {\text{NO}}_2^{ - } $ ranged from 2.5 to 19.3?kg?ha?1 and 0.1 to 10.6?kg?ha?1, respectively. Leaching rates differed between soil samples. The initial and secondary rate of $ {\text{NO}}_3^{ - } $ leaching was determined using an exponential model, and it ranged from 2.8 to 14.7?mg?kg?1 PV?1 and 0.11 to 0.32?mg?kg?1 PV?1. Greater leaching rates in the initial period could be due to leaching of $ {\text{NO}}_3^{ - } $ in solution, while the secondary leaching might be attributable to the diffusion-controlled transfer of $ {\text{NO}}_3^{ - } $ between mobile and immobile liquid phases. Analysis of variance indicated that the effects of soil type on total $ {\text{NO}}_3^{ - } $ leaching were highly significant (p?<?0.001). The results showed that soil $ {\text{NO}}_3^{ - } $ concentration was positively correlated with the peak concentration of $ {\text{NO}}_3^{ - } $ (r?=?0.86; p?<?0.01) and the total $ {\text{NO}}_3^{ - } $ leached (r?=?0.93; p?<?0.01). In addition, the total $ {\text{NH}}_4^{ + } $ leached was positively correlated with silt (r?=?0.67; p?<?0.05), clay (r?=?0.61; p?<?0.05), and pH (r?=?0.77; p?<?0.01), which suggests that soil parameters might be useful indicators of $ {\text{NO}}_3^{ - } $ and $ {\text{NH}}_4^{ + } $ leaching from calcareous soils. Nitrate leaching from soils could threaten groundwater supplies, so possible strategies for minimizing $ {\text{NO}}_3^{ - } $ leaching losses may need to be considered.  相似文献   

11.
Experiments were conducted for the study of nutrient budget in ten farmer's ponds (0.2–0.5 ha) in Orissa, India with a mean water depth of 1.0–1.2 m. Scampi (Macrobrachium rosenbergii) were stocked in these ponds at stocking density of 3.75–5.0/m2. The average initial body weight of scampi was 0.02 mg. The culture period was for 4 months. Feed was the main input. Total feed applied to these ponds ranged from 945 to 2261 kg pond/cycle (crop). The feed conversion ratio varied 1.65 to 1.78. In addition to feed, rice straw, urea, and single super phosphate were applied to these ponds in small amounts for plankton production. At harvest time, the average weight of scampi varied from 60–90 g. The budget showed that feed was the major input of nitrogen (N), phosphorus (P), and carbon in these ponds. The inorganic fertilizer (urea and single super phosphate), organic fertilizer (rice straw and yeast extract), and inlet water, either from the initial fills or from rainwater, were the source of all other N, P, and organic carbon (OC) to these ponds. Total N applied to these ponds through all these inputs ranged from 44.45 to 103.98 kg N per crop, 12.23 to 28.79 kg P per crop, and from 381.54 to 905.22 kg OC per crop, respectively. Among all the inputs, feed alone accounted for 95.34 % N, 97.98 % P, and 94.27 % OC, respectively. Recovery of 16.34 to 38.66 kg N (average 29.27 kg), 1.28 to 3.02 kg P (average 2.29 kg), and 63.21 to 149.51 kg OC (average 113.20 kg), respectively, by the scampi harvest were observed in these ponds. Thus, harvest of scampi accounted for recovery of 35.18 to 39.01 (average 36.85 %) of added N, 10.09 to 10.97 (average 10.44 %) of added P, and 7.57 to 17.12 (average 16.34 %) of added OC, respectively.  相似文献   

12.
The elemental contaminants in water and fish samples from Aba river were studied. The elements studied were Zn, Ni, As, Hg, Co and Mn. Three water samples and three samples of different fish species were collected from different locations in the river. The water and fish samples were analysed for elemental contaminants using Atomic Absorption Spectrophotometer (AAS). The elemental toxicants Zn and Mn were identified in appreciable amounts in fresh fish species namely, Lates niloticus and Oriochronis niloticus, of mean values 8.012 ppm and 0.861 ppm, respectively. The analysis also shows arsenic concentration of mean value 0.01 ppm in Lates niloticus. The analysis of frozen fish samples purchased from the Waterside market located near the river shows Ni and Hg levels of mean values 0.83 ppm and 0.02 ppm, respectively. The levels of elemental contaminants As, Zn, Hg and Mn from the water samples have mean values 0.082 ppm, 11.284 ppm, 0.201 ppm and 1.024 ppm, respectively. There are five industries that discharge waste products into Aba river. In view of this, there is a need to determine the level of pollution of the river, since the inhabitants depend on the river for their drinking water, fishing and other domestic uses. This study is aimed at determining the level of heavy metal toxicants in fish and water samples from the river. The effect of these elemental contaminants and the associated health hazards were examined.  相似文献   

13.
Biosolids from the WWTP of Thessaloniki were examined for the leaching of phosphorus (as ), nitrogen (as and ), and organic matter (as TOC and COD), using two tests: (1) a pH static leaching test and (2) a characterization test, relating contaminant release to the liquid to solid (L/S) ratio. Moreover, a Microtox toxicity test was conducted, to examine the pH dependency of the toxicity of the sludge leachate on the Vibrio fischeri bacterium. Maximum phosphorus release was observed at pH < 3 and at pH > 10. Ammonium nitrogen exhibited maximum leachability at near neutral pH conditions, while nitrate nitrogen exhibited a mild increase in the leachate, as the leachant pH increased from 2 to 12. Both TOC and COD exhibited an increase in the leachate concentration, as the leachant pH was increased from 2 to 12. Ecotoxicological analysis showed that maximum toxicity occurred at very low and very high pH-conditions. As liquid-to-solid ratio increased, the leachate concentration (in mg/l) of all parameters studied decreased. The results of the study were used to conduct a release assessment estimate for the case of Thessaloniki.  相似文献   

14.
污灌土壤中氨氮转化及其转化速率研究   总被引:1,自引:0,他引:1  
本文对污灌土壤中的氨氮转化及其转化速率进行了模拟实验研究.结果表明,随污灌进入土壤中的氨氮迅速转化为硝酸盐氮和气态氮。其转化速率的影响因素主要是气温、土壤pH值和土壤通气条件。例如在气温19~35℃、土壤pH值8.2~8.6和土壤通气良好的条件下,氨氮在3天内转化80%;14天内转化98%。  相似文献   

15.
16.
17.
Research on relationships between dissolved nutrients and land-use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-basins for 3 years to test for associations with land-use. Nutrient concentrations were analyzed for spatial and seasonal patterns and for relationships with land-use and stream discharge. Ortho-P and DN were higher in lower-elevation sub-basins dominated by poorly drained soils and agricultural production compared with higher-elevation sub-basins dominated by well-drained soils and forests. Eight lower basins had at least one sample period with nitrate-N?>?10 mg L?1. The Calapooia River had lower concentrations of dissolved nutrients compared with lower sub-basins, often by an order of magnitude. Dissolved organic N represented a greater proportion of DN in the upper forested sub-basins. Seasonal nutrient concentrations had strong positive correlations to the percent of a sub-basin that was managed for agriculture in all seasons (p?values?≤?0.019) except summer. Results suggest that agricultural lands are contributing to stream nutrient concentrations. However, poorly drained soils in agricultural areas may also contribute to the strong relationships that we found between dissolved nutrients and agriculture.  相似文献   

18.
Prediction models for exchangeable soil lead, published earlier in this journal (Andra et al. 2010a), were developed using a suite of native lead (Pb) paint-contaminated residential soils from two US cities heavily populated with homes constructed prior to Pb ban in paints. In this study, we tested the feasibility and practical applications of these prediction models for developing a phytoremediation design using vetiver grass (Vetiveria zizanioides), a Pb-tolerant plant. The models were used to estimate the exchangeable fraction of Pb available for vetiver uptake in four lead-spiked soil types, both acidic and alkaline, with varying physico-chemical properties and that are different from those used to build the prediction models. Results indicate a strong correlation for predictable exchangeable Pb with the observed fraction and as well with total Pb accumulated by vetiver grass grown in these soils. The correlation coefficient for the predicted vs. observed exchangeable Pb with p < 0.001 was 0.999, 0.996, 0.949, and 0.998 in the Immokalee, Millhopper, Pahokee Muck, and Tobosa soil type, respectively. Similarly, the correlation coefficient for the predicted exchangeable Pb vs. accumulated Pb in vetiver grass with p?< 0.001 was 0.948, 0.983, 0.929, and 0.969 for each soil type, respectively. This study suggests that the success of a phytoremediation design could be assessed upfront by predicting the exchangeable Pb fraction in a given soil type based on its properties. This helps in modifying the soil conditions to enhance phytoextraction of Pb from contaminated soils.  相似文献   

19.
Advances in process-based modelling of loads of nitrogen and phosphorus carried by rivers have created new possibilities to interpret time series of water quality data. We examined how model runs with constant anthropogenic forcing can be used to estimate and filter out weather-driven variation in observational data and, thereby, draw attention to other features of such data. An assessment of measured and modelled nutrient concentrations at the outlets of 45 Swedish rivers provided promising results for total nitrogen. In particular, joint analyses of observational data and outputs from the catchment model S-HYPE strengthened the evidence that downward trends in nitrogen were due to mitigation measures in agriculture. Evaluation of modelled and observed total phosphorus concentrations revealed considerable bias in the collection or chemical analysis of water samples and also identified weaknesses in the model outputs. Together, our results highlight the need for more efficient two-way communication between environmental modelling and monitoring.  相似文献   

20.
The paper discusses ambient concentrations of PM2.5 (ambient fine particles) and of 29 PM2.5-related elements in Zabrze and Katowice, Poland, in 2007. The elemental composition of PM2.5 was determined using energy dispersive X-ray fluorescence (EDXRF). The mobility (cumulative percentage of the water-soluble and exchangeable fractions of an element in its total concentration) of 18 PM2.5-related elements in Zabrze and Katowice was computed by using sequential extraction and EDXRF combined into a simple method. The samples were extracted twice: in deionized water and in ammonium acetate. In general, the mobility and the concentrations of the majority of the elements were the same in both cities. S, Cl, K, Ca, Zn, Br, Ba, and Pb in both cities, Ti and Se in Katowice, and Sr in Zabrze had the mobility greater than 70%. Mobility of typical crustal elements, Al, Si, and Ti, because of high proportion of their exchangeable fractions in PM, was from 40 to 66%. Mobility of Fe and Cu was lower than 30%. Probable sources of PM2.5 were determined by applying principal component analysis and multiple regression analysis and computing enrichment factors. Great part of PM2.5 (78% in Katowice and 36% in Zabrze) originated from combustion of fuels in domestic furnaces (fossil fuels, biomass and wastes, etc.) and liquid fuels in car engines. Other identified sources were: power plants, soil, and roads in Zabrze and in Katowice an industrial source, probably a non-ferrous smelter or/and a steelwork, and power plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号