首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption capacity parameters obtained for batch studies provide useful information about biosorption system. However, such data fail to explain the process under continuous-flow conditions. The present study is an attempt to explore the biosorption of Pb(II) and Cr(III) by straw from local wheat (Triticum aestivum). The biosorbent has been characterized by using Fourier transform infrared spectroscopy and surface area and elemental analyses and found to be porous and polyfunctional. S-shaped breakthrough curves were obtained at different column heights for the both metal ions. Various breakthrough parameters and saturation times have been determined. The column data have been successfully used to study the Bohart–Adams' bed depth service time (BDST) model and Yoon and Nelson's model. It was found that BDST model quite efficiently explained the whole column data whereas Yoon and Nelson model could explain it below 90 % breakthrough concentration. The predicted and calculated BDST parameters were in agreement with each other. Yoon and Nelson's constant decreased with an increase in the column height for both metal ions. Effect of change in flow rate on the Pb(II) biosorption has also been discussed with respect to BDST approach.  相似文献   

2.
Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World’s most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.  相似文献   

3.
基于双指标多等级的土壤重金属生态风险评价   总被引:1,自引:0,他引:1  
采用土壤中重金属的全量和有效态双重指标,建立基于多等级综合评估的土壤中重金属生态风险评价模型,将联合概率曲线法引入土壤评价模型,分析重金属暴露浓度与毒性数据的概率分布,考察重金属对土壤生物的毒害程度,从而确定土壤中重金属对于生态系统的风险。建立从简单到复杂的多等级综合评价方法,表征重金属的污染等级、浓度效应、多种重金属污染物的协同效应、不同重金属的毒性效应和土壤对不同重金属污染物的敏感性。选择典型地区采集有代表性的土壤样品,测定不同重金属的总量和有效态,验证评价模型的实用性和评价分级的合理性。旨在解决土壤重金属风险评价的方法学问题,为土壤环境质量管理提供支持。  相似文献   

4.
Saccharomyces cerevisiae yeast was entrapped in alginate for the recovery of copper ions from aqueous solution, in which both yeast and alginate could take metal ions. The Freundlich isotherm had been shown to be successful in describing biosorption and a linear biosorption was assumed when the equilibrium copper ion concentration in the fluid was lower than 1 mg/l. The biosorption isotherm was found to be independent of the immobilized yeast densities ranging from 6 to 17 percent. A mathematical model describing the mass transport along with the biosorption was developed with the main assumptions that the inner diffusion with constant diffusivity was the rate limiting step of the biosorption process and the pore solution locally equilibrated with the adjacent biosorbent (both yeast and alginate). This model has theoretical advantages over the formerly proposed Shrinkage Core Model and Linear Adsorption Model. Effective diffusion coefficients of copper ion in immobilized yeast beads using the model developed were found to be independent of the immobilized yeast densities ranging from 6 to 17 percent. The average result was 2.22×10?5 cm2/s.  相似文献   

5.
A metal fractionation study on bed sediments of River Narmada in Central India has been carried out to examine the enrichment and partitioning of different metal species between five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction). The river receives toxic substances through a large number of tributaries and drains flowing in the catchment of the river. The toxic substances of particular interest are heavy metals derived from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the river get adsorbed onto the suspended sediments, which in due course of time settle down in the bottom of the river. In this study fractionation of metal ions has been carried out with the objective to determine the eco-toxic potential of metal ions. Although, in most cases (except iron) the average trace/heavy metal concentrations in sediments were higher than the standard shale values, the risk assessment code as applied to the present study reveals that only about 1–3% of manganese, <1% of copper, 16–19% of nickel, 4–20% of chromium, 1–4% of lead, 8–13% of cadmium and 1–3% of zinc exist in exchangeable fraction and therefore falls under low to medium risk category. According to the Geo-accumulation Index (GAI), cadmium shows high accumulation in the river sediments, rest of other metals are under unpolluted to moderately polluted class.  相似文献   

6.
汽车废气中的铅对城市土壤污染状况调查   总被引:17,自引:0,他引:17  
通过现场调查,定量分析了乌鲁木齐市市区交通主干道二侧土壤中铅、镉等6种元素的含量,初步掌握了重金属元素的分布情况。调查结果表明,在交通密集易形成堵车的路段,土壤中重金属富集的量较高,在交通顺畅或车流量少的路段,土壤中重金属含量相对较低。铅污染的主要来源是汽车尾气。  相似文献   

7.
We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L?1 for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g?1. The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8–100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.  相似文献   

8.
Laboratory-scale experiments were conducted to determine the effect of heavy metals viz. copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn) on the different vital tissues of earthworm Eudrillus eugeniae such as head, gizzard, clitellum, and intestine after the worms were placed in municipal solid waste (MSW) substrate spiked with heavy metals in the concentration range of 0.05 g/kg to 1.0 g/kg of the waste for Cu, Cr, PB, and Zn and 0.05 g/kg for Cd. The experiments were conducted for 100 days with periodic observations and sample collection for investigation after every 10th day. Copper and lead metals were found to cause more deleterious effect in head, gizzard, and intestine. Chromium metal caused cellular damage to the intestinal region. In comparison, cadmium metal severity was more than copper, lead, and chromium metal. Zinc metal did not show deleterious effect on tissues. In general, earthworms can be used as biomarkers in toxicity studies related to heavy metals at cellular levels.  相似文献   

9.
Urban wastewater treatment leads to the generation of large quantities of biosolids. Accumulation of biosolids is a problem of environmental relevance due to the existence of heavy metals in the biosolids. Determination of total metal in biosolid provides information relating pollution levels. Determination of their mobilization capacity and behaviour in the environment is an important task. An experimental approach commonly used for studying the mobility, transport and bioavailability of metal in biosolids is the use of selective sequential extraction procedure. In the present study an attempt has been made to study the heavy metal properties in biosolid samples collected from urban wastewater treatment plants located at Mysore, Karnataka. Few heavy metals selected for the present study are cadmium, chromium, copper, iron, nickel and zinc. The concentration of these metals in biosolids and their partition in different fractions are studied. The speciation of metals based on the sequential extraction scheme was carried out. The concentration of heavy metals is lower than that established by European legislation. The residual fraction has the maximum percentage of heavy metals whereas, only a small fraction of heavy metals (Fe, Zn and Cd) are extracted in the most soluble fractions, exchangeable and carbonate fractions.  相似文献   

10.
上海市黄浦江表层沉积物重金属污染评价   总被引:5,自引:3,他引:2  
用沉积物富集系数法和Hakanson潜在生态风险评估法对上海市黄浦江表层沉积物重金属含量进行了评价。结果显示,沉积物中Cd、As和Pb含量富集程度较低,Hg和Cu含量富集程度较高;其分布特征为上游段含量相对较轻,到中游段有所上升,至下游段含量又有所下降,整体呈钟型分布,重金属含量分布规律可能与苏州河对黄浦江下游沉积物的影响和黄浦江中游段有工业污染排放输入有关;河口与内陆河流沉积物中重金属含量存在差异性,河口重金属含量明显下降;调查区37.5%的断面Hg含量潜在生态危害为中等;沉积物富集系数法可用来评价重金属累积程度,而潜在生态风险指数则突出对生物有很强毒性的重金属作用。  相似文献   

11.
A mathematical model is developed for metal ions uptake by aquatic plants. The model is based on a mechanism which assumes that the complex biological substances present in the plant react with the metal ions to form complexes of these ions at the solution–plant interface, and then the metal complexes diffuse through a membrane towards the bulk phase of the plant because of the concentration gradients present in the membrane. The model predicts the decreasing capacity of the plants for metal ions uptake as the contact time between the solution and the plant is increased. Experiments are conducted in the laboratory for the removal of chromium, copper, iron, nickel, lead and zinc by measuring metal ions uptake by two aquatic plants, Salvinia and Spirodela, in the solution of these metal ions of concentration ranging from 1 to 8 ppm. After estimating the parameters of the model, it is used for predicting the metal ions concentration in the solution as a function of time and the metal ions concentration inside the plants after 14 days of contact time. The comparison of the model predictions with the experimental results shows excellent agreement. The above model may be used for design and analysis of an aquatic‐plant‐based waste water treatment system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
This study was undertaken to assess the heavy metal concentration of the drinking water with respect to zinc, copper, cadmium, manganese, lead and arsenic in Kamrup district of Assam, India. Ground water samples were collected from tube wells, deep tube wells and ring wells covering all the major hydrogeological environs. Heavy metals in groundwater are estimated by using Atomic Absorption Spectrometer, Perkin Elmer Analyst 200. Data were assessed statistically to find the distribution pattern and other related information for each metal. The study revealed that a good number of the drinking water sources were contaminated with cadmium, manganese and lead. Arsenic concentrations although did not exceeded WHO limits but was found to be slightly elevated. Copper and zinc concentrations were found to be within the prescribed WHO limits. An attempt has also been made to ascertain the possible source of origin of the metals. Positive and significant correlation existing between manganese with zinc and copper indicates towards their similar source of origin and mobility. In view of the present study and the level of heavy metal contamination, it could be suggested to test the potability of the water sources before using it for drinking purpose.  相似文献   

13.
Hussainsagar Lake in the heart of Hyderabad City (India) receives toxic substances through five streams draining from a catchment area of 245 km2. Of particular interest are heavy metals received from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the lake get adsorbed onto the suspended sediments, which eventually settle down in the bottom of the lake. In this study, fractionation of metal ions has been studied on the bed sediments of Hussainsagar Lake in order to determine the ecotoxic potential of metal ions. Comparison of sediments with average shale values indicated anthropogenic enrichment with copper, nickel, lead, cadmium, and zinc. The risk assessment code as applied to the present study reveals that 10–17% of manganese, 10–18% of nickel, 14–24% of chromium, 10–19% of lead, 21–30% of cadmium, and 18–28% of zinc exist in exchangeable fraction and, therefore, comes under medium risk category and may enter into food chain. The association of these metals with the exchangeable fraction may cause deleterious effects to aquatic life. The present database will help in formulating guidelines for carrying out dredging operations under restoration programs in the Hussainsagar Lake.  相似文献   

14.
The pollution of aquifer sediments by heavy metals has assumed serious concern due to their toxicity and accumulative behavior. Changes in environmental conditions can strongly influence the behavior of both essential and toxic elements by altering the forms in which they occur and therefore quantification of the different forms of metal is more meaningful than total metal concentrations. In this study, fractionation of metal ions in aquifer sediments of Semria Ojhapatti area, Bhojpur district, Bihar has been studied to determine the ecotoxic potential of metal ions. The investigations suggest that iron, copper, and arsenic have a tendency to remain associated in the following order residual > reducible > acid-soluble > oxidizable; manganese and zinc have tendency to be associated as residual > acid-soluble > reducible > oxidizable. The risk assessment code reveals that manganese and zinc occur in significant concentration in acid-soluble fraction and therefore comes under the high risk category and can easily enter the food chain. Most of the iron, copper, and arsenic occur as immobile fraction (i.e. residual) followed by its presence in reducible fraction and would pose threat to the water quality due to changing redox conditions. The metal enrichment factor in the study area shows moderate to significant metal enrichment in the aquifer sediments which may pose a real threat in near future. The geo-accumulation index of metals also shows that the metals lie in the range of strongly contaminated (for iron at shallow depths) to moderately contaminated to uncontaminated values.  相似文献   

15.
石河子燃煤电厂重金属排放研究   总被引:3,自引:2,他引:1  
万勤  孟优  陈平  李杰 《中国环境监测》2015,31(6):129-133
选取石河子市典型燃煤电厂,对其燃煤烟气重金属排放浓度及飞灰、底渣、脱硫石膏重金属的富集进行定量分析。结果表明,烟气中各重金属排放浓度从高到低依次为Zn、Ni、Cr、Pb、Cu、Hg、Co、Cd、As。各重金属元素在飞灰中的富集程度较高,除Hg、Cd、Ni外,其他重金属元素在飞灰的富集因均值均大于5。其中,As在飞灰的富集因子均值为5.76。研究结果可为石河子重金属污染控制提供基础数据。  相似文献   

16.
我国高速公路周边土壤重金属污染现状及研究进展   总被引:2,自引:0,他引:2  
以我国高速公路周边土壤重金属为研究对象,综述了我国高速公路周边土壤重金属污染特征、影响因素、来源、环境风险及其研究进展。高速公路周边土壤主要受Pb、Cd、Cr、Cu、Zn等重金属污染,主要呈现指数分布、偏态分布和两者混合分布等特点,并且受到土地利用、风向、地形、车流量等多种因素的综合影响。土壤重金属的来源除了受成土母质等自然因素影响以外,公路交通和周边工农业活动也会对其来源产生较大影响。传统的土壤重金属评价方法主要采用单因子指数法、地累积指数法、生态风险评价法等对重金属的污染等级和环境风险进行评价。未来的研究应将重金属形态分析、空间和地统计分析、重金属稳定同位素示踪和源解析模型以及预测模型等多种手段相结合,开展高速公路周边土壤重金属的污染特征、时空分布、来源及预测预警研究等,为我国高速公路沿线工农业生产布局及其土壤重金属污染防控提供科学依据和决策支撑。  相似文献   

17.
The concentrations of lead, cadmium, copper, zinc, iron, and mercury in the water, sediment and biota of the Singapore River were determined. The concentration of the various metals in water showed significant variation at different sampling times and there was enrichment of lead content. The spatial patterns of metal distribution in the sediment could be due to the different pollution sources such as exhaust emission from boats and other environmental variables such as clay content of sediment or tide level. In the biota, higher amounts of metals were found in species inhabiting the river bed while organisms of higher trophic level such as free-swimming fishes and crabs accumulated lower amounts. In general, the flesh of fishes and crabs had the least content of metals compared to other tissues. The Concentration of various metals in bivalve, Mytilopsis sallei, which were found extensively in the river did not reflect the pollution distribution.  相似文献   

18.
The growth of symbiotic algal cells (zooxanthellae) isolated from the coral, Montipora verrucosa under the influence of the heavy metals copper (Cu) and Zinc (Zn) was investigated. Zooxanthellae cells cultured in f/2 enriched seawater medium were subjected to a maximum Cu level of 42µg.l-1, Zn concentration of 509µg.l-1, and various combinations of the two metals, in ecotoxicological bioassays lasting up to 28 days. A Cu level of 40µg.l-1 caused significantly depressed specific growth rates of cell cultures obtained using a standard growth model. Low concentrations of the metals Cu and Zn in combination elicited synergistic effects of sublethal toxicity. The use of cultured zooxanthellae cells in bioassays investigating sublethal effects of heavy metal stress has relevant applications in the field of pollution monitoring.  相似文献   

19.
The Fractionation of Fe, Zn, Cu, Pb, Mn and Cd in the sediments of the Achankovil River, Western Ghats, India using a sequential extraction method was carried out to understand the metal availability in the basin for biotic and abiotic activities. Spatial distribution of heavy metals has been studied. Sediment grain size has significant control over the heavy metal distribution. The fluctuations in their concentration partly depend upon the lithology of the river basin and partly the anthropogenic activities. The sediments are dominated by sand and are moderately to strongly positively skewed and are very leptokurtotic in nature. The quartzite and feldspars are abundant minerals along with significant amount of mica with low clay content. The core sediments show increasing trend of heavy metal concentration with depth due to the recent addition of anthropogenic sources and post-diagenic activities. Significant amount of Cd (18%) was found in carbonate fraction, which may pose environmental problems due to its toxic nature. Small concentrations of metals, except Cd and Cu, are in exchangeable fraction, which indicate low bio-availability. Enrichment Factor (EF) for individual metals shows the contribution from terrregious and in part from anthropogenic sources. Selective Sequential Extraction (SSE) study shows the variation in specific metal distribution pattern, their distribution in different phases and their bio-availability. Maximum amount of the metals were bound to the non-residual fractions (mainly Fe-oxides). Overall, bio-availability of these micronutrients from sediments seems to be very less. Non-residual phase is the most important phase for majority of heavy metals studied. Among the non-residual fraction, maximum amount of the heavy metals bound to Fe-oxides. The study high lights the need for in-depth study of heavy metals distribution and fractionation in the smaller river basins to get precise information on the behavior and transport of heavy metals in the fluvial environment and their contribution to the world ocean.  相似文献   

20.
Seafood containing heavy metals as a result of environmental contamination causes toxicity in human beings. To evaluate such kind of contamination, our study targeted the analysis of metals such as lead, copper, cadmium, mercury, and arsenic in muscle tissue of the fish. The fish commonly consumed such as Brama brama (Pomfret), Rachycentron canadus (Surmai/King Fish), Rastrelliger kanagurta (Mackerel), Eleutheronema tetradactylum (Ravas/Indian salmon), and Metapenaeus monoceros (Brown Prawn) were collected from four different docks in the city. The heavy metals in tissue samples of fish were estimated using voltammeter and cold vapor atomic absorption spectrophotometer. Heavy metal concentration in the tissues varied significantly depending upon the locations from where the fish were collected. Although the concentration of arsenic, copper, cadmium, and lead were in normal range, the concentration of mercury was found to exceed the daily permissible levels (1 μg/g) as a food source for human consumption. We have analyzed heavy metals from different locations in Mumbai—Versova dock, Sassoon dock, Navi Mumbai dock, and Mazgaon dock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号