首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions.  相似文献   

2.
The heating and cooling of unit processes (utilities) are often the most significant energy fraction of a gate-to-gate life-cycle inventory (LCI) for individual chemicals. Electricity usage is typically a smaller factor. An LCI of a manufacturing process for a specific chemical has been used to identify the heating and cooling requirements. This paper demonstrates the sub-modules used to convert these utilities into actual energy-related emissions for use in the LCI of a specific chemical. Assumptions and results of the unit operation inventory data and of the potential life-cycle burdens are clearly stated, to foster the objective of transparency. A user may substitute another energy grid, fuel sources, or efficiencies based on some site-specific data. The sub-modules utilize a design basis for calculating the utility emissions. Results may be used in LCI studies in the chemical, biochemical, and pharmaceutical industries.  相似文献   

3.
1 and C2 hydrocarbons (trichloroethane, trichloroethene, tetrachloroethene, dichloromethane). Measures aiming at the reduction of toxic emissions and ozone depletion potential (ODP) may possibly lead to a shift of environmental impacts towards higher energy consumption, emission of waste water, and volatile organic compounds (VOC) with photochemical oxidant creation potential (POCP). The present article concerns itself with a life cycle assessment of the three main degreasing processes in order to compare their integral environmental impacts with one another. This is supplemented by presenting the methodology of the life cycle inventory life cycle inventory analysis (LCI). Generally, the applicability of the established LCI method can be shown quite clearly. However, some difficulties arise, especially at the stage of the goal definition, as the use of the process and the functional unit cannot be pinned down as easily and neatly as for most other products. The definition of the use of the process and the functional unit is not as straightforward as for most products. Among the potential functional units identified are the mass of removed impurities, cleaning time, cleaning work, percentage of purity, throughput of parts, loads, mass or surface and virtual coefficients. The mass of removed impurities turned out to be the most suitable parameter for measuring the technical performance of degreasing processes. The article discusses background, purpose, scope, system boundaries, target group, process tree and representativeness of the present study.  相似文献   

4.
On process optimization considering LCA methodology   总被引:1,自引:0,他引:1  
The goal of this work is to research the state-of-the-art in process optimization techniques and tools based on LCA, focused in the process engineering field. A collection of methods, approaches, applications, specific software packages, and insights regarding experiences and progress made in applying the LCA methodology coupled to optimization frameworks is provided, and general trends are identified. The "cradle-to-gate" concept to define the system boundaries is the most used approach in practice, instead of the "cradle-to-grave" approach. Normally, the relationship between inventory data and impact category indicators is linearly expressed by the characterization factors; then, synergic effects of the contaminants are neglected. Among the LCIA methods, the eco-indicator 99, which is based on the endpoint category and the panel method, is the most used in practice. A single environmental impact function, resulting from the aggregation of environmental impacts, is formulated as the environmental objective in most analyzed cases. SimaPro is the most used software for LCA applications in literature analyzed. The multi-objective optimization is the most used approach for dealing with this kind of problems, where the ε-constraint method for generating the Pareto set is the most applied technique. However, a renewed interest in formulating a single economic objective function in optimization frameworks can be observed, favored by the development of life cycle cost software and progress made in assessing costs of environmental externalities. Finally, a trend to deal with multi-period scenarios into integrated LCA-optimization frameworks can be distinguished providing more accurate results upon data availability.  相似文献   

5.
Recent years have seen advancements in the development and use of life-cycle assessment (LCA) analytic techniques. Although these techniques have highlighted the power of LCA to identify the environmental consequences of a product system through its entire life cycle, they have also highlighted a major shortcoming of LCA—the lack of cost information. Because companies make daily decisions that involve trade-offs between economics and the environment, including cost information in LCA is critical for advancing its use as an overall environmental decision-making tool. This article outlines the current state of LCA methodology development, defines key life-cycle cost assessment terms and concepts, and evaluates existing cost assessment techniques with the objective of building an integrated life-cycle cost assessment tool.  相似文献   

6.
Life cycle inventory (LCI) is becoming more widely used as a tool to evaluate the resource and energy use and the environmental releases associated with various products. The methodology for handling different recycling scenarios is also becoming increasingly important. Several different methods exist for handling recycling in an LCI. The method described in this paper uses mathematical models to show that the same basic equations can be used to handle a variety of recycling options for multi-product systems.  相似文献   

7.
Life cycle assessment (LCA) and life cycle costing (LCC) are well-established methods used for many years in many countries for system analysis of waste management. According to standard LCA procedure the assessment should include improvement analysis, in many cases this is performed by simple sensitivity analyses. An obstacle to perform more thorough sensitivity analyses is that it is hard to distinguish input data important to the results, i.e. key parameters. This paper further elaborates sensitivity analyses performed in an environmental system analysis for a hypothetical Swedish municipality. In this paper, the method to identify and test input data that can be categorised as potential key parameters is described. The method and the results from computer simulations of the identified parameters are presented, and some conclusions are drawn regarding the robustness of the results for environmental impact from municipal solid waste management. The major conclusion is that the results are robust. Changes in results, when changing the preconditions, are often small and the changes observed do not lead to new conclusions; i.e., a change of ranking order between treatment options.  相似文献   

8.
Validation of a hybrid life-cycle inventory analysis method   总被引:2,自引:0,他引:2  
The life-cycle inventory analysis step of a life-cycle assessment (LCA) may currently suffer from several limitations, mainly concerned with the use of incomplete and unreliable data sources and methods of assessment. Many past LCA studies have used traditional inventory analysis methods, namely process analysis and input-output analysis. More recently, hybrid inventory analysis methods have been developed, combining these two traditional methods in an attempt to minimise their limitations. In light of recent improvements, these hybrid methods need to be compared and validated, as these too have been considered to have several limitations. This paper evaluates a recently developed hybrid inventory analysis method which aims to improve the limitations of previous methods. It was found that the truncation associated with process analysis can be up to 87%, reflecting the considerable shortcomings in the quantity of process data currently available. Capital inputs were found to account for up to 22% of the total inputs to a particular product. These findings suggest that current best-practice methods are sufficiently accurate for most typical applications, but this is heavily dependent upon data quality and availability. The use of input-output data assists in improving the system boundary completeness of life-cycle inventories. However, the use of input-output analysis alone does not always provide an accurate model for replacing process data. Further improvements in the quantity of process data currently available are needed to increase the reliability of life-cycle inventories.  相似文献   

9.
Life-Cycle Assessment (LCA) is an analytical tool that evaluates the environmental consequences of a product, process, or activity across its entire life cycle. LCA is used internationally by government and industry to obtain a comprehensive perspective of the interactions between an activity and the environment and provides a method to systematically identify opportunities for improvement. The framework is integrated into environmental management programs motivated by market awareness, public perception, and cost savings. The use of LCA is driven by external forces such as eco-labels and the recent development of the ISO 14000 standards. However, LCA has many shortcomings that need to be addressed. The concerns of poor data quality, data availability, high implementation costs, subjectivity, and lack of standardization have sent LCA into a state of flux. In light of the recent surge of interest in LCA, the authors of this article have conducted a corporate survey that targets the implementation of LCA. Their goal is to determine the level of activity of LCA among known practitioners and to elucidate common themes. This article presents their findings from responses by 34 companies that were known to be actively involved in LCA or contemplating its future use.  相似文献   

10.
Nowadays, there is a trend in many countries towards more environmentally benign products and processes. Life-Cycle Assessment (LCA) is a quantitative analysis tool developed and utilized for the evaluation of environmental impacts occurring throughout the entire life-cycle of a product, process or activity. LCA requires a large amount of data in its different phases and can also generate large amounts of results which may be hard to interpret. In order to uncover and visualize the structure of large multidimensional data sets, Multivariate Analysis techniques can help. Hence, in this paper, a methodology using Principal Component Analysis and Multi-Dimensional Scaling is proposed and illustrated by means of two case studies. The first case study evaluates the operation of several wastewater treatment plants. The second case study deals with the environmental evaluation of the cultivation, processing and consumption of mussels. In both case studies, the redundancy present in the data allowed a dimensionality reduction from seven and ten to two dimensions, with a small loss of information. Plotting the environmental impact data in these two dimensions can help visualize, interpret and communicate them.  相似文献   

11.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations.  相似文献   

12.
In the industrial practice, the choice and evaluation of strategies of recycling and reuse of solid mineral wastes (thermal process residues, mining and quarrying wastes, construction and demolition wastes) could be based on ecological risk assessment (EcoRA) and life cycle assessment (LCA) studies also because of the substantial lack of regulations. Several methods and approaches of EcoRA and LCA have been developed so far and it is not always evident to consider a pertinent method for each application case. Furthermore, it is even less trivial to combine local and global scale results so to identify the best scenario from different alternatives.After a comprehensive review of recycling and reuse routes of mineral waste and relative legislation, this study addresses these issues by providing a detailed analysis and comparison of global and local scale impact assessment methods used in LCA and EcoRA, and finally an inventory of LCA and EcoRA studies already completed, to serve as a basis for further research.  相似文献   

13.
This paper summarizes the results and the lessons learnt from an LCA case study comparing acoustic automotive components. Three alternative acoustic components produced by the Brazilian automotive sector are considered: dual-layer polyurethane (DL-PU) panel, recycled textile absorption-barrier-absorption (ABA-cotton) panel and recycled textile DL (DL-cotton) panel. DL-PU is a “status-quo” alternative, composed mainly of synthetic plastics and the two other alternatives are mainly made of recycled cotton fibres. Using the Life Cycle Assessment (LCA) method, the three following phases of the panels’ life cycle are examined: production, use and end-of-life. For the latter, two end-of-life scenarios are analysed: landfill and incineration with energy recovery. For the LCA model, some Life Cycle Inventory (LCI) datasets have been adapted from the data available in the EcoInvent database in order to adjust to the Brazilian context. LCA results show that, within the entire life cycle, the DL-cotton option, which combines two layers of recycled fibres of different densities, is overall the best alternative from an environmental perspective. This result is therefore independent from the end-of-life scenario. This is mainly due to the lower weight of this component, which is extremely important for the transportation aspects, but also due to its lower consumption of fossil resources, to the energy saving during its production and to the avoidance of textile disposal that would happen otherwise. The obtained results confirm the available literature dealing with the use of renewable fibres in industrial products. The particular behaviour of recycled fibres compared to virgin ones (in terms of shared contribution of agricultural production and of avoidance of landfilling) is highlighted in this paper, thanks to the application of the “50/50” allocation rule. LCA results are discussed in terms of their potential use in an R&D context. Further research needs are also derived from the case study, including the potential benefits of developing multi-objective optimization methods that include environmental impact to be used in the design of such a component.  相似文献   

14.
Integrated smelter-refineries play an important role in the recovery of multiple metals from complex primary and secondary materials, and hence in closing metals cycles. Processes in these facilities are strongly interconnected, dynamic, and multifunctional, which challenges a typical representation in life cycle assessment (LCA). This is especially true when LCA is applied to calculate the environmental profile of single metals products.This study examines methodological requirements for assessing complex co-product systems using attributional LCA through a static, gate-to-gate inventory model that quantifies the environmental impacts of each of the metal products of an integrated precious metals smelter-refinery. The model is based on a large number of subprocesses and is formulated using detailed industry data, which allows quantification of the sensitivity of the results with respect to allocation rationales and the data collection period.The results within one impact category vary strongly among metals (up to four orders of magnitude for copper compared to rhodium). Moving from mass- to value-based allocation changes the result for a given metal by up to two orders of magnitude. If value-based allocation is used, the selected reference year for metals prices influences the results by up to a factor of two.Allocation rationales are critically analyzed, and it is shown that none reflect the business model or other system drivers. While the model is focused on quantifying environmental impacts of metal outputs, the actual process is economically driven to efficiently treat a continuously changing feed mix. The complexity of a smelter-refinery cannot be captured by static, attributional inventory models, which is why the choice of allocation rationale remains arbitrary. Instead, marginal, parameterized models are needed; however, such models are substantially more time and data intensive and require disclosure of more detailed, process specific data.  相似文献   

15.
生命周期评价是评价产品、工艺或活动(服务)整个生命周期阶段有关环境负荷,进而辨识和评价减少环境影响机会的一种非常有用的工具。将生命周期评价应用于固体废物环境管理,无疑对于我国建立科学化的固体废物环境管理模式具有十分重要的作用。本文对生命周期评价的定义、主要阶段、应用工具、特点进行了阐述,并对生命周期评价如何应用于我国固体废物环境管理进行了探讨。  相似文献   

16.
Concerns over non-renewable fossil fuel supply and climate change have been driving the Renaissance of bio-based materials. To substantiate environmental claims, the impacts of bio-based materials are typically quantified by applying life cycle assessment (LCA). The internationally agreed LCA standards provide generic recommendations on how to evaluate the environmental impacts of products and services but do not address details that are specifically relevant for the life cycles of bio-based materials. Here, we provide an overview of key issues and methodologies explicitly pertinent to the LCA of bio-based materials. We argue that the treatment of biogenic carbon storage is critical for quantifying the greenhouse gas emissions of bio-based materials in comparison with petrochemical materials. We acknowledge that biogenic carbon storage remains controversial but recommend accounting for it, depending on product-specific life cycles and the likely time duration of carbon storage. If carbon storage is considered, co-product allocation is nontrivial and should be chosen with care in order to: (i) ensure that carbon storage is assigned to the main product and the co-product(s) in the intended manner and (ii) avoid double counting of stored carbon in the main product and once more in the co-product(s). Land-use change, soil degradation, water use, and impacts on soil carbon stocks and biodiversity are important aspects that have recently received attention. We explain various approaches to account for these and conclude that substantial methodological progress is necessary, which is however hampered by the complex and often case- and site-specific nature of impacts. With the exception of soil degradation, we recommend preliminary approaches for including these impacts in the LCA of bio-based materials. The use of attributional versus consequential LCA approaches is particularly relevant in the context of bio-based materials. We conclude that it is more challenging to prepare accurate consequential LCA studies, especially because these should account for future developments and secondary impacts around bio-based materials which are often difficult to anticipate and quantify. Although hampered by complexity and limited data availability, the application of the proposed approaches to the extent possible would allow obtaining a more comprehensive insight into the environmental impacts of the production, use, and disposal of bio-based materials.  相似文献   

17.
This study presents the contributions of materials, earth engineering machines and construction techniques to potential environmental impacts from the main items of typical road earthworks. To achieve this goal, the overall activity at a 1.9-km long French earthworks project site for a heavily trafficked highway was surveyed during its 2007–2009 construction period. Using data collected and a numerical model of road life cycle assessment (LCA), i.e. ECORCE, six indicators could be evaluated, namely: energy consumption, global warming potential, acidification, eutrophication, photochemical ozone creation, and human chronic toxicity. When available, several life cycle inventories were implemented in order to appraise indicator sensitivity with respect to the considered panel of pollutants. Results also allowed estimating from an LCA point of view: (i) the conservation of both aggregates and soil as induced by quicklime treatment and (ii) the duration necessary for projected traffic levels to offset the potential environmental impacts of the earthworks stage.  相似文献   

18.
Life cycle assessment (LCA) was applied to analyze a food-processing wastewater treatment plant and investigate the economic and environmental effects of the plant. With the long-term operational data of this plant, an inventory of relative inputs, e.g., flow rate, chemical oxygen demand (COD), and suspended solids, etc., and outputs of the plant, e.g., effluent COD and suspended solids, methane production, etc., was compiled. The potential environmental effects associated with those inputs and outputs were evaluated, and the results of the inventory analysis and impact assessment phases of the plant were interpreted. One feature of this study was the assessment of the treatment plant based on both energy and material flows. Another feature was the establishment of an assessment model with an integration of plant operating parameters, system recognition and grey relation. The analytical results are helpful for the design and operation of wastewater treatment plants.  相似文献   

19.
In order to effectively integrate environmental attributes into the product design and development processes, it is crucial to identify the significant environmental aspects related to a product system within a relatively short period of time. In this study, the usefulness of life cycle assessment (LCA) and a matrix method as tools for identifying the key environmental issues of a product system were examined. For this, a simplified LCA (SLCA) method that can be applied to Electrical and Electronic Equipment (EEE) was developed to efficiently identify their significant environmental aspects for eco-design, since a full scale LCA study is usually very detailed, expensive and time-consuming. The environmentally responsible product assessment (ERPA) method, which is one of the matrix methods, was also analyzed. Then, the usefulness of each method in eco-design processes was evaluated and compared using the case studies of the cellular phone and vacuum cleaner systems. It was found that the SLCA and the ERPA methods provided different information but they complemented each other to some extent. The SLCA method generated more information on the inherent environmental characteristics of a product system so that it might be useful for new design/eco-innovation when developing a completely new product or method where environmental considerations play a major role from the beginning. On the other hand, the ERPA method gave more information on the potential for improving a product so that it could be effectively used in eco-redesign which intends to alleviate environmental impacts of an existing product or process.  相似文献   

20.
Separate collection of municipal solid waste has overcome the 50% threshold in the Asti District in northern Italy, nearly one-third being composed of household and green organic waste. In order to address present and future solutions, it becomes therefore fundamental to assess the environmental performances of the current management of organic waste from separate collection. A from-gate-to-cradle life cycle assessment (LCA) model has been developed by expanding system boundaries, in order to carry out the assessment in the context of the whole waste management streamline. The environmental performances of an existing aerobic plant were made available, based on field measured data, by paying attention to the role and contribution of waste management subsystems. The need for actual and reliable data on materials and energy input, as well as gross and net gains from materials recovery, including benefits arising from use of compost in farming activities, was probably the major drawback that had to be faced. The study integrated the findings of different investigations from the literature with field measured data in order to obtain a more comprehensive framework representative of the area under study. The results may help public administrators to better understand the suitability of using LCA tools when dealing with solid waste management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号