首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L?1 to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.  相似文献   

2.
Illegal dumping of polychlorinated biphenyl (PCB) capacitors was discovered in Kobe, Japan, in 2001, leaving about 68 m(3) (92 tons) of soil contaminated with approximately 6.6 kg of PCBs. Solvent extraction technology carried out in 2002-2003 using isopropyl alcohol remedied the affected soil at the site. Forty-seven batch treatments were conducted during full-scale treatment. On average, 8.4 extraction cycles per batch were needed to achieve the clean-up goal for PCBs (i.e., the Japanese environmental quality standard for soil). Analytical results showed that the average PCB concentration (88 microg g(-1)-dry soil) in untreated soil samples of all the batches was decreased to 1.2 microg g(-1)-dry soil in treated soil samples, yielding a removal efficiency of 98.6%. Dioxin responsive-chemical activated luciferase gene expression assay (DR-CALUX) and enzyme-linked immunosorbent assay (ELISA) adopting a monoclonal antibody against 2,3',4,4',5-pentachlorobiphenyl (PCB #118) were used to rapidly screen soil samples before and after solvent extraction. The DR-CALUX and ELISA results were in good agreement with World Health Organization toxicity equivalent values and analytically determined PCB concentrations, respectively. Regular monitoring during the treatment period confirmed that the applied technology met Japanese environmental and control regulations concerning treatment and disposal of contaminated soils and treatment residues. After full-scale treatment, the amount of PCBs recovered from the solvent purification system approximated the estimated amount of PCBs spilled.  相似文献   

3.
Produced water is water trapped in underground formations that is brought to the surface along with oil or gas production. Oilfield impacted soil is the most common environmental problem associated with oil production. The produced water associated with oil-production contaminates the soil and causes the outright death of plants, and the subsequent erosion of topsoil. Also, impacted soil serves to contaminate surface waters and shallow aquifers. This paper is intended to provide an approach for full characterization of contaminated soil by produced water, by means of analysis of both the produced water and the impacted soil using several recommended analytical techniques and then identify and assay the main constituents that cause contamination of the soil. Gialo-59 oilfield (29N, 21E), Libya, has been chosen as the case study of this work. The field has a long history of petroleum production since 1959, where about 300,000 bbl of produced water be discharged into open pit. Test samples of contaminated soil were collected from one of the disposal pits. Samples of produced water were collected from different points throughout the oil production process, and the analyses were carried out at the labs of Libyan Petroleum Institute, Tripoli, Libya. The results are compared with the local environmental limiting constituents in order to prepare for a plan of soil remediation. The results showed that the main constituents (pollutants) that impact the soil are salts and hydrocarbon compounds. Accordingly; an action of soil remediation has been proposed to remove the salts and degradation of hydrocarbons.  相似文献   

4.
Complexometric equilibrations were performed with six chelating reagents to mobilise Cu, Mn, Pb and Zn from a contaminated urban soil. The metal-laden aqueous extract was treated with sodium diethyldithiocarbamate (DEDTC) to precipitate the heavy metals from solution while liberating the chelating reagent. The aqueous supernatant fraction was then re-combined with the soil particulates to extract more pollutants. A sparing quantity of EDTA (ethylenediaminetetraacetic acid; 10 mmol) mobilised 32-54% of the 5 mmol of heavy metals from the soil with three cycles but only 0.1 and 1.0% of the iron and magnesium, respectively, was removed. Whereas DPTA (1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid) and citric acid also mobilised each of the heavy metals to some extent and continued to extract these metals during all three cycles, the DTPA (diethylenetriamine pentaacetic acid), although efficient initially, could not be recycled with these conditions. ADA [N-(2-acetamido)iminodiacetate] and SCMC [(S)-carboxymethyl-L-cysteine] were selective for copper and zinc but mobilised only Cu when recycled. An alternate means of regenerating the chelating reagent involved treatment of the aqueous extract with magnesium (Mg0) granules. Excess HEDC [bis(2-hydroxyethyl)dithiocarbamate] mobilised appreciable quantities (19-57%) of heavy metals from the soil and retained its complexing activity when recycled. An appreciable fraction of the mobilised Pb and Cu and a portion of the Zn were cemented to the surfaces of the excess magnesium whereas virtually all of the Fe and Mn was removed from solution as insoluble hydroxides.  相似文献   

5.
Soil-aquifer treatment (SAT) of wastewater is an increasingly valued practice for replenishing aquifers due to ease of operation and low maintenance needs and therefore low cost. In this study, we investigated the fate of endotoxins through laboratory-scale SAT soil columns over a four month period. The effluent of rapid sand filtration was run through the columns under gravity flow conditions. Four SAT columns were packed with four different filter materials (fine sand, medium sand, coarse sand and very coarse sand). The effluent of rapid sand filtration (average dissolved organic carbon (DOC) = 4 mg l(-1) and average endotoxin concentration = 4 EU ml(-1)) was collected from a domestic wastewater treatment plant in Sapporo, Japan. DOC removal ranged from 12.5% to greater than 22.5% during the study, with DOC levels averaging 3.1 and 3.5 mg l(-1) for the SAT columns packed with different soils. Endotoxin transformation exhibited different profiles, depending on the time and soil type. Reduction in endotoxin concentration averaged 64.3% and was as high as 86.7% across the soil columns 1, 2, 3 and 4, respectively. While DOC removal was gradual, the reductions in endotoxin levels were rather rapid and most of the removal was achieved in the top layers. Soil with a larger grain size had lower efficiency in removing endotoxin. Tests were performed to evaluate the transformation of organic matter showing endotoxicity and to determine the mechanisms responsible for changes in the structural and size properties of dissolved organic matter (OM) during SAT. Dissolved OM was fractionated using Sep-Pack C18 Cartridges into hydrophobic and hydrophilic fractions. Dialysis tubes with different molecular weight cut-offs were used to perform size fractions of OM showing endotoxicity. Evaluation of the transformation of organic matter showing endotoxicity during SAT indicated that both hydrophobic and large molecules were reduced. Moreover, experimental findings showed that adsorption test data fit to the Freundlich isotherm and were affected by the particle grain size with higher adsorption capacity for fine and medium sand.  相似文献   

6.
For years, the Dorson Abad region has been extremely polluted by Tehran Oil Refinery due to leaking from its underground pipelines, storage tanks, and evaporation ponds. To assess the concentrations of hazardous polycyclic aromatic hydrocarbon (PAH) compounds, soil samples were collected from the grounds at and adjacent to a polluted stream located in the study area. The samples were then analyzed, and the results revealed that 12 of the 16 USEPA PAHs were noticeably present in the soil, which, among them, benzo[k]fluoranthene and chrysene had the highest concentrations with averages of 357.17 and 173.38 mg/kg, respectively. A comparison of the obtained concentrations with the soil screening levels indicated that both benzo[k]fluoranthene and chrysene concentrations were substantially higher than EPA screening level values, signifying the necessity of soil remediation for these contaminants in the area. Techniques such as soil washing/flushing, high temperature thermal desorption, and solidification/stabilization were investigated for treatment of the contaminated soil; solidification/stabilization is recommended as an applicable and cost-effective remediation method for Dorson Abad due to the size of the region, relatively low cost of the binder (cement), and low volatility of benzo[k]fluoranthene and chrysene.  相似文献   

7.
8.
This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.  相似文献   

9.
In this study, we examined three horizontal and vertical soil profiles along a sewage drainage ditch in order to determine the spatial distribution of Cu, Pb, and Zn in soils and to assess the bioavailability and potential ecological risks associated with these metals in a potential groundwater source area. Results showed that the concentrations of Cu, Pb, and Zn were approximately at background level, suggesting that human activities (industrial and agricultural pollution) had a negligible influence on these metals in soil, and that the concentrations reflected the natural background levels in the study area. Cu, Pb, and Zn concentrations were slightly higher in topsoil (0–20 cm) than deeper in the soil profile. Using a modified BCR sequential extraction method to evaluate the mobility and bioavailability of metals showed that the potential bioavailability sequence of Cu, Pb, and Zn at three depths in the soil profile was in the order Cu?≈?Pb?<?Zn. The potential ecological risk from the metals was evaluated using risk assessment code, and the results suggest that Cu and Zn pose no or low risk, while there is a low or medium risk from Pb. Results from groundwater monitoring showed that the groundwater was not polluted by leaching from soil.  相似文献   

10.
The aim of this study was to investigate the spatial distribution of heavy metal in soil and evaluate the dissolution of metal from soil to ponded-surface water, leaching through soil profiles and metal uptake in grass as related to different land-use practices. The data provided a scientific basis for best-management practices for land use in Khli Ti watershed. The watershed has a Pb-contamination problem from the previous operation of a Pb-ore concentrator and abandoned Zn–Pb mine. Sampling sites were selected from a land-use map, with land-use types falling into the following four categories: forest, agricultural land, residential area and road. Soil, ponded-surface water, grass samples and soil profiles were collected. The study related soil characteristics from different land-use practices and locations with observed metal concentrations in ponded-surface water and soil. High enrichment factors of Pb and As in soil were found. Partitioning coefficient, Kd values were in the order: Cr > Pb > Ni > Cu > Cd > Zn. Soil disturbance from land-use activities including tillage and traffic increased leaching of trace metal from soils. Pb in soil was significantly taken up by grass even though the Transfer Factor, TF values were rather low. Agricultural activities in the watershed must be limited. Moreover, land encroachments in the upper and middle part of the watershed which have high potential of Pb must be strictly controlled in order to reduce the Pb contamination from non-point sources.  相似文献   

11.
Soil in metropolitan region suffers great contamination risk due to the rapid urbanization especially in developing countries. Beijing and Tianjin, together with their surrounding regions, form a mega-metropolitan region in northern China. To assess the soil environmental quality, a total of 458 surface soil samples were collected from this area. Concentrations of Cr, Cu, Pb, Zn, As, Cd, and Hg were analyzed and compared to the Chinese environmental quality standards for soil. Multivariate analysis was carried out to identify the possible sources and Geographic Information Systems techniques were applied to visualize the spatial data. It was found that the primary inputs of As were due to pedogenic sources, whereas Hg was mainly of anthropogenic source. Other elements including Cr, Cu, Pb, Zn, and Cd were from both lithogenic and anthropogenic origins. Health risk assessment based on the maximum heavy metal concentration indicated that As derived from sewage irrigation area can result in carcinogenic lifetime risk due to ingestion and/or dermal contact of soil. The potential non-carcinogenic risk for children is significant for Pb and the cumulative effect of multiple metals is of concern for children in the vicinity of mining site. The results increased our knowledge for understanding natural and anthropogenic sources as well as health risk for metals in metropolitan soil.  相似文献   

12.
日本土壤环境质量标准与污染现状   总被引:10,自引:0,他引:10  
介绍了日本土壤污染的环境质量标准以及日本市区、农用地土壤和有毒有害化学物质的污染现状  相似文献   

13.
Mining has been carried out upstream of Miyun Reservoir, Beijing, for several decades, and has caused metal emissions to the environment, threatening human health. We conducted a soil survey to assess metal contamination in this area and to determine distribution of heavy metals in the particle size. We attempted to determine the possible sources of the metals and the significance of metals in the fine particle fractions to soil risk assessments. Thirty-four soil samples were collected, and eight samples were partitioned into seven size fractions. Most of the metal concentrations in the soils were higher than the background levels in Beijing, and the metal concentrations and total organic matter (TOC) contents generally increased as the particle size decreased. Each metal except Hg significantly positively correlated with the TOC. The metals in the coarse-grained soils were mainly derived from parent materials, but the metals in the fine fractions were mostly anthropogenic. Statistical analyses showed that there were three metal sources: Cd, Cu, Hg, Pb, and Zn had anthropogenic sources; Co, Cr, Ni, and V had mixed anthropogenic and natural sources; and As and Be had natural sources. The trace metals were primarily in the clay and fine silt fractions, and they might pose health risks through the inhalation of resuspended soil particles (PM10 and PM2.5). The elevated accumulation factors, enrichment factors, and ecological risk indices for the metals in the fine fractions suggest that risk assessments should be based on the fine particle size.  相似文献   

14.
15.
Geostatistical strategy for soil sampling: the survey and the census   总被引:4,自引:0,他引:4  
A soil sampling strategy for spatially correlated variables using the tools of geostatistical analysis is developed. With a minimum of equations, the logic of geostatistical analysis is traced from the modeling of a semi-variogram to the output isomaps of pollution estimates and their standard deviations. These algorithms provide a method to balance precision, accuracy, and costs. Their axiomatic assumptions dictate a two-stage sampling strategy. The first stage is a sampling survey, using a radial gird, to collect enough data to define, by a semi-variogram, the ranges of influence and the orientation of the correlation structure of the pollutant plume. The second stage is a census of the suspected area with grid shape, sizes and orientation dictated by the semi-variogram. The subsequent kriging analysis of this data gives isopleth maps of the pollution field and the standard error isomap of this contouring. These outputs make the monitoring data understandable for the decision maker.  相似文献   

16.
Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha???1 year???1 in the year 1989 to 13.21 t ha???1 year???1 in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.  相似文献   

17.
The UK is legally required by the EU Water Framework Directive (WFD) to improve the environmental quality of inland and coastal waters in the coming years. Historic metal mine sites are recognised as an important source of some of the elements on the WFD priority chemicals list. Despite their contamination potential, such sites are valued for their heritage and for other cultural and scientific reasons. Remediating historic mining areas to control the contamination of stream waters, whilst also preserving the integrity of the mine site, is a challenge but might be achieved by novel forms of remediation. In this study, we have carried out environmental monitoring at a historic, and culturally-sensitive, lead-silver mine site in southwest England and have undertaken a pilot experiment to investigate the potential for a novel, non-invasive remediation method at the site. Concentrations of Pb and Zn in mine spoil were clearly elevated with geometric mean concentrations of 6,888 and 710 microg g(-1), respectively. Mean concentrations of Pb in stream waters were between 21 and 54 microg l(-1), in exceedance of the WFD environmental quality standard (EQS) of 7.2 microg l(-1) (annual average). Mean Zn concentrations in water were between 30 and 97 microg l(-1), compared to the UK EQS of 66.5 microg l(-1) (average). Stream sediments within, and downstream from, the mining site were similarly elevated, indicating transport of mine waste particles into and within the stream. We undertook a simple trial to investigate the potential of hydroxyapatite, in the form of bonemeal, to passively remove the Pb and Zn, from the stream waters. After percolating through bonemeal in a leaching column, 96-99% of the dissolved Pb and Zn in stream water samples was removed.  相似文献   

18.
This study investigates adsorption-desorption and the leaching potential of glyphosate and aminomethylphosphonic acid (AMPA) in control and amended—addition of cow dung or rice husk ash—acidic Malaysian soil with high oxide mineral content. The addition of cow dung or rice husk ash increased the adsorptive removal of AMPA. The isotherm data of glyphosate and AMPA best fitted the Freundlich model. The constant Kf for glyphosate was high in the control soil (544.873 mg g?1) followed by soil with cow dung (482.451 mg g?1) then soil with rice husk ash (418.539 mg g?1). However, for AMPA, soil with cow dung was high (166.636 mg g?1) followed by soil with rice husk ash (137.570 mg g?1) then the control soil (48.446 mg g?1). The 1/n values for both glyphosate and AMPA adsorptions were <?1 indicating their strong affinity for adsorbents. Desorption of both glyphosate and AMPA occurred only in the control soil. The compounds were not detected in soils with added cow dung or rice husk ash. The addition of cow dung or rice husk ash increased glyphosate mobility. However, ground water ubiquity scores for both control and amended soils were <?2.8. This indicated glyphosate is a transitional herbicide; therefore, its leaching potential in the soil is low, despite the addition of cow dung or rice husk ash. Addition of these wastes decreased the mobility and leaching potential of AMPA. The addition of cow dung or rice husk ash could be beneficial in increasing adsorption and enhancing degradation of these compounds.  相似文献   

19.
20.
A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号