首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Bioaerosols are a type of suspended sediments that contribute to poor air quality in Taiwan. Bioaerosols include allergens such as: fungi, bacteria, actinomycetes, arthropods and protozoa, as well as microbial products such as mycotoxins, endotoxins and glucans. When allergens and microbial products are suspended in the air, local air quality will be influenced adversely. In addition, when the particle size is small enough to pass through the respiratory tract entering the human body, the health of the local population is also threatened. Therefore, the purpose of this study is to attempt to understand the concentration and types of bacteria and the bacteria numbers for various particle size ranges during a study period of June 2005 to February 2006 in Taichung City, Central Taiwan. The results indicate that the total average bacterial concentration by using NA medium incubated for 48 h were 8.0 × 102, 1.4 × 103, 2.4 × 103 and 1.3 × 103, 1.9 × 103, 3.5 × 103 cfu/m3 for CMES, TRIPS and RFS sampling sites during the daytime and nighttime period of June 2005 to February 2006. Moreover, the total average bacterial concentration by using R2A medium incubated for 48 h were 8.5 × 102, 1.5 × 103, 2.2 × 103 and 1.2 × 103, 1.7 × 103, 2.5 × 103 cfu/m3 for CMES, TRIPS and RFS sampling sites the daytime and nighttime during the same sampling period. The total average bacteria concentration was the same in either NA or R2A medium for the same sampling times or sites. The total average bacterial concentration was higher in daytime period than that of nighttime period for CMES, TRIPS and RFS sampling sites. The high average bacterial concentration was found in the particle size range of 0.53–0.71 mm (average bioaerosol size was in the range of 2.1–4.7 μm) for each sampling site. Also, 20 kinds of bacteria exceeded levels for each sampling site and were classified as according to shape: rod, coccus and filamentous.  相似文献   

2.
The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m3 s?1, representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size?>?0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5 %. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20 %) compared to group 2 (16.90 to 45.55 %). Two Fisher’s linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1?=??9.405?+?4232.119?×?A???1795.805?×?B?+?281.224?×?C, and F 2?=??2.842?+?2725.137?×?A???1307.688?×?B?+?231.353?×?C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m3 s?1, respectively. The model correctly predicts 88.9 and 100.0 % of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8 % are correctly classified. The model predicts that 31.4 % of the model domain areas consist of high-sand mass composition areas and the remaining 68.6 % comprise low-sand mass composition areas.  相似文献   

3.
The distribution of fecal coliforms was investigated and determined in Izmir Bay from 1996 to 2005. Izmir Bay severely was polluted from industrial and domestic discharges during decades. In early 2000, a wastewater treatment plant began to treat domestic and industrial wastes. This plant treats the wastes about 80% capacity after 2001. The sampling periods cover before and after treatment plant. Assessment method for determining the number of fecal coliform has evolved membrane filtrations. Maximum surface fecal coliform concentration was 4.9 × 105 cfu 100 ml???1 in 1996–2000 period. Following the opening treatment system, fecal coliform density decreased 2.1 × 104 cfu 100 ml???1 during 2001–2005. A continuous improvement can be sustained in the water quality if direct inflow of untreated wastewater is prevented.  相似文献   

4.
Urban household kitchen environment was assessed for safety by determining their levels of indicator bacteria, hygienic habits and risk of cross-contamination. Household kitchens (60) were selected in Warri Town, Nigeria, by the multi-stage sampling technique. Contact surfaces, water and indoor kitchen air were analysed for aerobic plate counts, total and faecal coliforms using Nutrient and McConkey media by swab/rinse method, membrane filtration and sedimentation methods, respectively. Hygienic habits and risk of cross-contamination were assessed with structured questionnaire which included socio-demographic variables. On the basis of median counts, the prevalence of high counts (log cfu/cm2/m3/100 mL) of aerobic plate counts (>3.0), total coliforms (>1.0) and faecal coliforms (>0) on contact surfaces and air was high (58.0–92.0%), but low in water (30.0–40.0%). Pots, plates and cutleries were the contact surfaces with low counts. Prevalence of poor hygienic habits and high risk of cross-contamination was 38.6 and 67.5%, respectively. Education, occupation and kitchen type were associated with cross-contamination risk (P = 0.002–0.022), while only education was associated with hygienic habits (P = 0.03). Cross-contamination risk was related (P = 0.01–0.05) to aerobic plate counts (OR 2.30; CL 1.30–3.17), total coliforms (OR 5.63; CL 2.76–8.25) and faecal coliforms (OR 4.24; CL 2.87–6.24), while hygienic habit was not. It can be concluded that urban household kitchens in the Nigerian setting are vulnerable to pathogens likely to cause food-borne infections.  相似文献   

5.
A total of 285 water samples were collected from 71 roof harvested rainwater tanks from four villages in different provinces over a two-year (2013–2014) period during the early (October to December) and late (January to March) rainy season. Water quality was evaluated based on Escherichia coli, faecal coliforms and Enterococcus spp. prevalence using the IDEXX Quanti-Tray quantification system. Real-Time PCR was used to analyse a subset of 168 samples for the presence of Shigella spp., Salmonella spp. and E. coli virulence genes (stx1, stx2 and eaeA). Escherichia coli were detected in 44.1% of the samples, Enterococcus spp. in 57.9% and faecal coliforms in 95.7%. The most prevalent E. coli concentrations in harvested rainwater were observed in 29.1% of samples and 22.5% for Enterococcus spp. and, were within 1–10 cfu/100 ml and 10–100 cfu/100 ml, respectively, whereas those for faecal coliforms (36.6%) were within 100–1000 cfu/100 ml. On average 16.8% of the samples had neither E. coli nor Enterococcus spp. detected, while 33.9% had only Enterococcus spp. and 23.7% had only E. coli. E. coli and Enterococcus spp. were detected together in 25.5% of the samples. Evaluation of samples for potential pathogenic bacteria showed all tested samples to be negative for the Shigella spp. ipaH gene, while five tested positive for Salmonella ipaB gene. None of the samples tested positive for the stx1 and stx2 genes, and only two tested positive for the eaeA gene. These findings are potentially useful in the development of a simplified risk assessment strategy based on the concentrations of indicator bacteria.  相似文献   

6.
We assessed the incidence of faecal-indicator bacteria in Tyume River over a 12-month period between August 2010 and July 2011. Total coliforms, faecal coliforms and enterococci were determined by the membrane filtration method. Total coliforms were detected in counts ranging from 2.1?×?102 to 3.4?×?104?CFU/100 ml. Faecal coliform counts ranged from 1?×?102 to 1.6?×?104?CFU/100 ml while enterococci counts were in the range of 3.3?×?101 to 5.1?×?103?CFU/100 ml. Indicator bacteria counts increased from upstream to downstream sampling sites. Counts of indicator bacteria at all sites were significantly affected by seasonal changes. The bacteriological qualities of the river water were poor, exceeding the guideline of 200 CFU/100 ml and 33 CFU/100 ml for faecal coliforms and enterococci, respectively, for recreational water. Faecal coliform counts also exceeded the 1,000 CFU/100 ml guideline for water used in fresh produce irrigation. Microbial source tracking results showed that faecal pollution was predominantly of human origin during spring at all sampling sites. During other seasons, human faecal pollution was largely confined to midstream and downstream sampling sites. Generally, the presence of faecal-indicator bacteria in the river water samples suggests faecal pollution of this freshwater resource, raising the possibility of the presence of pathogenic microorganisms in the water and a threat to public health.  相似文献   

7.
Phytoplankton species distribution and composition were determined by using microscopy and pigment ratios in the Kongsfjorden during early autumn 2012. Variation in sea surface temperature (SST) was minimal and matched well with satellite-derived SST. Nutrients were generally limited. Surface phytoplankton abundance ranged from 0.21?×?103 to 10.28?×?103 cells L?1. Phytoplankton abundance decreased with depth and did not show any significant correlation with chlorophyll a (chl a). Column-integrated phytoplankton cell counts (PCC) ranged from 94.3?×?106 cells m?2 (Kf4) to 13.7?×?106 cells m?2 (Kf5), while chl a was lowest at inner part of the fjord (6.3 mg m?2) and highest towards the mouth (24.83 mg m?2). Biomass from prymnesiophytes and raphidophytes dominated at surface and 10 m, respectively. The contribution of Bacillariophyceae to biomass was low. Generally, heterotrophic dinoflagellates were great in abundance (12.82 %) and ubiquitous in nature and were major contributors to biomass. Various chl pigments (chl b, chl c, phaeopigments (phaeo)) were measured to obtain pigment/chl a ratios to ascertain phytoplankton composition. Phaeo were observed only in inner fjord. Chl b:a ratios and microscopic observations indicated dominance of Chlorophyceae at greater depths than surface. Furthermore, microscopic observations confirmed dominance of chl c containing algae throughout the fjord. The study indicates that pigment ratios can be used as a tool for preliminary identification of major phytoplankton groups. However, under the presence of a large number of heterotrophic dinoflagellates such as Gymnodinium sp. and Gyrodinium sp., pigment signatures need to be supplemented by microscopic observations.  相似文献   

8.
Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3–2.3 × 105 cell ml?1) was always higher than at Port Klang (0.3–7.1 × 104 cell ml?1) (p < 0.001). μ ranged up to 0.98 day?1 (0.51 ± 0.29 day?1), while g ranged from 0.02 to 0.31 day?1 (0.15 ± 0.07 day?1) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day?1 (0.29–0.82 day?1) and 0.31 ± 0.14 day?1 (0.13–0.63 day?1), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi ? 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.  相似文献   

9.
Mapping forest biomass is fundamental for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m?×?31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10–40, 40–70 and >70 % of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m3 ha?1. The total growing stock of the forest was found to be 2,024,652.88 m3. The AGWB ranged from 143 to 421 Mgha?1. Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE)?=?42.25 Mgha?1) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha?1 respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha?1. The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.  相似文献   

10.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

11.
In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)- ${\rm{\beta}} $ -d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value = 0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-β -d-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-β -d-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed poor correlations between those in airborne and dust-borne states (R2?=?0.002~0.43). In our study, the lowest ultrafine particle concentration about 5,203 pt/cm3 was observed in office and the highest was observed at the train station, up to 32,783 pt/cm3. Lead concentration was shown to range from 80 to 170 ng/mg with the highest also observed at the train station. The information provided in this work can be used to learn the general situation of relevant health risks in Beijing. And the results here suggested that when characterizing exposure both airborne and dust-borne as well as the environments should be considered.  相似文献   

12.
To assess metal mobility in pruning waste and biosolids compost (pH?6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g?L?1, pH?2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7?±?0.1–3.3?±?0.1 mg?kg?1), Fe (49.2?±?5.2–76.8?±?6.8 mg?kg?1), and Mn (7.2?±?1.1–11.4?±?0.7 mg?kg?1) in leaves of R. officinalis, whereas the concentration of only Mn (25.4?±?0.3–42.2?±?2.9 mg?kg?1) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.  相似文献   

13.
The heavy metal (Pb, Cd, Cr, and Ni) content of a fish species consumed by the Sistan population and its associated health risk factors were investigated. The mean concentrations of Pb, Cd, and Cr were slightly higher than the standard levels. The Ni content of fish was below the maximum guideline proposed by the US Food and Drug Administration (USFDA). The average estimated weekly intake was significantly below the provisional tolerable intake based on the FAO and WHO standards for all studied metals. The target hazard quotients (THQ) of all metals were below 1, showing an absence of health hazard for the population of Sistan. The combined target hazard quotient for the considered metals was 26.94 × 10?3. The cancer risk factor for Pb (1.57 × 10?7) was below the acceptable lifetime carcinogenic risk (10?5). The results of this study reveal an almost safe level of Pb, Cd, Cr, and Ni contents in the fish consumed by the Sistan population.
Graphical abstract ?
  相似文献   

14.
Delhi is one of the most polluted cities in the world. The generation of aerosols in the lower atmosphere of the city is mainly due to a large amount of natural dust advection and sizable anthropogenic activities. The compositions of organic compounds in aerosols are highly variable in this region and need to be investigated thoroughly. Twenty-four-hour sampling to assess concentrations of n-alkanes (ng/m3) in PM10 was carried out during January 2015 to June 2015 at Indira Gandhi Delhi Technical University for Women (IGDTUW) Campus, Delhi, India. The total average concentration of n-alkanes, 243.7 ± 5.5 ng/m3, along with the diagnostic tools has been calculated. The values of CPI1, CPI2, and CPI3 for the whole range of n-alkanes series, petrogenic n-alkanes, and biogenic n-alkanes were 1.00, 1.02, and 1.04, respectively, and C max were at C25 and C27. Diagnostic indices and curves indicated that the dominant inputs of n-alkanes are from petrogenic emissions, with lower contribution from biogenic emissions. Significant seasonal variations were observed in average concentrations of n-alkanes, which is comparatively higher in winter (187.4 ± 4.3 ng/m3) than during the summer season (56.3 ± 1.1 ng/m3).  相似文献   

15.
A three-dimensional regression analysis attempted to model mesozooplankton (MSP) biomass using sea surface temperature (SST) and chlorophyll-a (Chl-a). The study was carried out from January 2014 to July 2015 in the southwestern Bay of Bengal (BoB) and sampling was carried out on board Sagar Manjusha and Sagar Purvi. SST ranged from 26.2 to 33.1 °C while Chl-a varied from 0.04 to 6.09 μg L?1. During the course of the study period, there was a weak correlation (r?= 0.32) between SST and Chl-a statistically. MSP biomass varied from 0.42 to 9.63 mg C m?3 and inversely related with SST. Two kinds of approaches were adopted to develop the model by grouping seasonal datasets (four seasonal algorithms) and comprising all datasets (one annual algorithm). Among the four functions used (linear, paraboloid, the Lorentzian and the Gaussian functions), paraboloid model was best suited. The best seasonal and annual algorithms were applied in the synchronous MODIS-derived SST and Chl-a data to estimate the MSP biomass in the southwestern BoB. The modelled MSP biomass was validated with field MSP biomass and the result was statistically significant, showing maximum regression coefficient for the seasonal algorithms (R2?=?0.60; p?=?0.627; α?= 0.05), than the annual algorithm (R2?=?0.52; p?=?0.015, α?=?0.05).  相似文献   

16.
Particles with aerodynamic diameters <10  $\upmu $ m (PM10) and particles with aerodynamic diameters <2.5  $\upmu $ m (PM2.5) were sampled during summer 2006 in Beijing and mass concentrations, water-soluble ionic compounds concentrations, and acidic buffer capacity were analyzed. Results show that the mass concentration ranges of PM10 and PM2.5 were from 56.4 to 226.6  $\upmu $ g/m3 and from 31.3 to 200.7  $\upmu $ g/m3 during sampling days, respectively. Concentrations of F???, Cl???, NO $_{3}^{\,\,-}$ , NO $_{2}^{\,\,-}$ , SO $_{4}^{\,\,2-}$ , Ac???, Ca2?+?, Na?+?, K?+?, Mg2?+?, and NH $_{4}^{\,\,+}$ in particles were analyzed by ion chromatography. Microtitration was adapted to determine the acidic?Cbasic property and the change of the buffering systems in different pH of the aqueous solution in which the PM is suspended. The major alkalinity and buffer capacity of particles were analyzed and calculated. The average carbonate buffer capacity was 0.3 mmol/g in PM2.5 and 0.7 mmol/g in PM10. The average acetic acid buffer capacity was 0.1 mmol/g in PM2.5 and 0.3 mmol/g in PM10. Carbonate and acetic acid are the main species for the buffer capacity in the particle phase. The average mass of carbonate was 71.0 mg/g in PM10 and 46.7 mg/g in PM2.5. The average mass of acetic acid was 11.2 mg/g in PM2.5 and 20.0 mg/g in PM10.  相似文献   

17.
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites.  相似文献   

18.
Monthly sampling in mangrove intertidal sediments of Andaman Archipelago was carried out during a 1-year study (January to December, 2013) in order to analyse the spatial and temporal distribution of microphytobenthos (MPB) and MPB biomass (sediment chlorophyll-a (chl-a)) in the surficial layer 0–1 cm. The MPB community was mainly composed of diatoms. The MPB biomass concentration in surface sediment (0–1 cm) ranged from 0.7 to 16.98 μg cm?3. Population density of benthic diatoms varied from 78 to 224 ind cm?3. This study identified 41 diatom taxa (27 pennate diatoms, 14 centric diatoms) in the sediment, and among all the diatom taxa, we distinguished few true planktonic species—Coscinodiscus centralis, Coscinodiscus marginatus, Leptocylindricus danicus, Planktoniella sol, Thalassiosira decipiens, Thalassionema nitzschioides and Thalassiothrix longissima. Overall, a high percentage of diatoms were pennate (81%) as opposed to centric. Based on benthic diatom abundance, species composition and distribution, MPB assemblages of sampling stations were grouped into two distinct clusters: one with St. 1 and St. 3 and another one with St. 2 and St. 4. Canonical correspondence analysis (CCA) revealed seasonality as the most important factor determining variability in diatom species composition among sampling sites. There was a distinct seasonal pattern in MPB biomass distribution and benthic diatom cell density during monsoon and post-monsoon seasons. Our results suggest that among various physical and chemical variables studied, greater levels of overlying water nutrients and sediment textures significantly correlated and were conducive factors for MPB. This is the first detailed study on the MPB from these mangrove sediments, providing benchmark data for future studies about these remote groups of Andaman and Nicobar Islands.  相似文献   

19.
Water quality and bacterial contamination from 18 drinking water municipal plants in three locations at Giza governorate were investigated. The average total count of bacteria detected after four stages of treatments in the investigated plants was 32 CFU/1 mL compared to 2330 cfu/mL for raw water, with a reduction percentage of 98.6. Although there is a relatively high removal percent of bacterial contamination from the water sources, however, several bacterial pathogens were identified in the produced water prepared for drinking including Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Shigella spp. After 3 days of water incubation at 30 °C, the amount of bacterial endotoxins ranged from 77 to 137 ng/mL in the water produced from the municipal plants compared to 621–1260 ng/mL for untreated water. The main diseases reported from patients attending different clinics and hospitals during summer 2014 at the surveyed locations and assuredly due to drinking water from these plants indicated that diarrheas and gastroenteritis due to E. coli and Campylobacter jejuni constituted 65.7% of the total patients followed by bacillary dysentery or shigellosis due to Shigella spp. (7.9%) and cholera due to Vibrio cholera (7.2%). There was an increase in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) as well as urea and creatinine values of guinea pigs consuming water produced from the non-governmental plants for 6 months indicating remarkable liver and kidney damages. Histological sections of liver and kidney from the tested animal revealed liver having ballooning degeneration of hepatocytes and distortion and fragmentation of the nuclei, while the section of the kidney showed irregularly distributed wrinkled cells, degenerated Bowman’s capsule, congested blood vessels, and inflammatory cells.  相似文献   

20.
Tehran is one of the megacities of the world with a population of over eight million. Its air is highly polluted mainly due to the suspended particulate matters, which encompasses a wide spectrum of chemical elements. These elements based on their type, size, and impact on the life cycle have various environmental and heath risks. In this research, the neutron activation method is used to determine the concentration levels of Al, Ba, Fe, Mg, and V in the urban air. Thus, two districts of Tehran with different characteristics are selected. District 21 includes much of the industries located in Tehran metropolitan and is considered as an industrial area. In contrast, district 22 lacks any significant industrial activity. It is a newly established and expanding district adjacent to district 21 with a great deal of constructional activities. For the measurement of the suspended particulate matters in the air, the various sections of the aforesaid districts with industrial, residential, heavily congested traffic, residential/commercial, residential/heavily congested traffic, and residential/industrial classifications were identified. Subsequently, 24 sampling stations were selected. The sampling of the suspended particulate matters was conducted with the aid of a high volume pump containing 125 mm cellulose filters in two different time intervals. After completion of the sampling process, the samples were prepared and sent to the research reactor of the Iran Nuclear Energy Organization for Neutron Activation. During the next steps, the radiations emitted from the samples were registered, the radiation curves were plotted, and the amounts of the trace elements were determined. As a result, the average concentration levels of Al, Ba, Fe, Mg, and V were identified to be 3.301140, 2.273658 × 10, 4.0681696 × 10???1, 3.5525475 × 10???1, and 3.04075 × 10???2 μg/m3, respectively. Moreover, the emission sources of the aforesaid elements into the air were identified. The concentration levels of these elements in the industrial and heavily congested traffic sections were higher. Finally, it was concluded that the statistical analysis of these elements presents a meaningful correlation among them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号