首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The pre-harvest residue limit (PHRL) of abamectin (abamectin B1a and B1b) in Perilla frutescens leaves grown under greenhouse conditions were investigated using high-performance liquid chromatography with a fluorescence detector. Samples were extracted with acetonitrile. The extract was purified through a solid phase extraction procedure. Then the purified extract was derivatized with trifluoroacetic anhydride and N-methylimidazole to form a strong stable fluorescent derivative of abamectin. Finally, derivatized abamectins were conveyed to the detector via an Atlantis C18 column, with water and methanol as a mobile phase. Calibration curves were linear over the calibration ranges with coefficients of determinants r 2?≥?0.999. The limits of detection and quantification were 0.0033 and 0.01 mg kg?1 for abamectin B1a and B1b, respectively. Recovery was assessed in a control matrix at two different fortification concentrations, with three replicates for each concentration. Good recoveries were obtained for the target analytes and ranged from 82.11 to 93.03 %, with relative standard deviations of less than 8 %. The rate of disappearance of total abamectin on perilla leaves for recommended and double the recommended doses was described as first-order kinetics with a half-life of 0.7 days. Using the PHRL curve, we could predict the residue level of total abamectin to be 0.92 mg kg?1 at 7 days before harvest or 0.26 mg kg?1 at 4 days before harvest, which would be below the provisional MRL designed by the Korea Food and Drug Administration.  相似文献   

2.
In this paper, dissipation dynamic and terminal residue of flusilazole in mandarin and soil, as well as residue distribution of flusilazole in mandarin, were studied at three sites in China. Mandarin peel, mandarin pulp, whole mandarin, and soil samples were extracted by acetonitrile, cleaned up with dispersive solid-phase extraction, then analyzed by gas chromatography–mass spectrometry. The dissipation half-lives of flusilazole in mandarin and soil at all three experiment sites were 6.3–8.4 days and 5.5–13.4 days, respectively, with the exception of the soil dissipation at the Hunan site, which showed an increase–decrease process. Flusilazole residue levels in whole mandarin were all below 0.1 mg/kg on 14 days after the last application. Terminal residue study showed that flusilazole was mostly distributed in mandarin peel, which indicates minimal risk for eating mandarin pulp. These results could provide guidance for the proper and safe use of flusilazole on citrus fruits, and further our understanding of pesticide distribution in citrus fruits.  相似文献   

3.
The dissipation and residues of bispyribac-sodium in rice cropping system were studied. Bispyribac-sodium residues were extracted by a simple analytical method based on QuEChERs and detected by LC-MS/MS. The limit of detection for bispyribac-sodium of this method was 0.375?×?10?3 ng. The limit of quantification (LOQ) was 5.0 μg/kg for rice plant samples, 2.0 μg/kg for rice hull, 0.2 μg/kg for water, and 0.1 μg/kg for soil and husked rice samples. The average recoveries of bispyribac-sodium ranged from 74.7 to 108 %, with relative standard deviations less than 13 %. The half-lives of bispyribac-sodium in rice plant, water, and soil were in the range of 1.4–5.6 days. More than 90 % of bispyribac-sodium residue dissipated within 5 days. The final residues of bispyribac-sodium in rice were all below LOQ at harvest time.  相似文献   

4.
A simple and accurate method of determining metalaxyl and cymoxanil in pepper and soil was developed by ultra-performance liquid chromatography–photodiode array detection. The limits of detection were 0.015 mg/kg for metalaxyl and 0.003 mg/kg for cymoxanil. The limits of quantification were 0.05 mg/kg for metalaxyl in pepper and soil as well as 0.01 mg/kg for cymoxanil in pepper and soil. Recoveries of pepper and soil were investigated at three spiking levels and ranged within 77.52 to 102.05 % for metalaxyl and 87.15 to 103.21 % for cymoxanil, with relative standard deviations below 9.30 %. For field experiments, the half-lives of metalaxyl were 3.2 to 3.9 days in pepper and 4.4 to 9.5 days in soil at the three experimental locations in China. At harvest, pepper samples were found to contain metalaxyl and cymoxanil well below the maximum residue limit MRLs of the European Union (EU) following the recommended dosage and the interval of 21 days after last application.  相似文献   

5.
Two-year field trials were performed at two experimental sites to investigate dissipation and terminal residues of propamocarb in ginseng root, stem, leaf, and soil by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Mean recoveries ranged from 80.5 to 95.6 % with relative standard deviations (RSDs) of 5.5–9.1 % at fortified levels of 0.01, 0.02, 0.05 and 0.20 mg kg?1. The half-lives of propamocarb were 5.00–11.36 days in root, 5.07–11.46 days in stem, 6.83–11.31 days in leaf and 6.44–8.43 days in soil. The terminal residues of propamocarb were below the maximum residue limits (MRLs) of EU (0.20 mg kg?1) and South Korea (0.50 mg kg?1 in fresh ginseng and 1.0 mg kg?1 in dried ginseng) over 28 days after last spraying at recommended dosage. The results provide a quantitative basis for establishing the MRL and give a suggestion of safe and reasonable use of propamocarb in ginseng.  相似文献   

6.
A simple residue analytical method using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure for the determination of trifloxystrobin and its metabolite trifloxystrobin acid (CGA321113) in tomato and soil was developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limits of detection were 0.0005 mg/kg for trifloxystrobin and 0.001 mg/kg for trifloxystrobin acid, respectively. The average recoveries in tomato and soil ranged from 73–99 % for trifloxystrobin and 75–109 % for trifloxystrobin acid, with relative standard deviations below 15 %. The method was then used to study the dissipation and residues in tomato and soil. The dissipation half-lives of trifloxystrobin in tomato were 2.9 days (Beijing) and 5.4 days (Shandong), while in soil were 1.9 days (Beijing) and 3.0 days (Shandong), respectively. The final results showed that the major residue compound was trifloxystrobin in tomato whereas it was its metabolite, trifloxystrobin acid, in soil. The final residues of total trifloxystrobin (including trifloxystrobin acid) were below the EU maximum residue limit of 0.5 mg kg?1 in tomato 3 days after the treatment.  相似文献   

7.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

8.
Two independent field trials were performed in Guangdong and Hubei, China in 2011 to investigate the dissipation and residue levels of triforine in strawberry and soil. A fast and simple method using gas chromatography with electron capture detector was developed and validated to determine triforine levels in strawberry and soil. The average recovery of triforine in strawberry ranged from 87.46 to 104.32 % with a relative standard deviation (RSD) of 0.72 to 4.54 %; that in soil ranged from 83.82 to 103.01 % with an RSD of 3.89 to 4.36 %. The limit of quantification of the proposed method was 0.01 mg/kg for both strawberry and soil. The results suggest that the triforine dissipation curves followed the first-order kinetic. The half-lives of triforine in strawberry from Guangdong and Hubei were 3.58 and 4.42 days, respectively; those in soil were 3.53 and 4.10 days, respectively. The terminal residues of triforine in strawberry ranged from 0.032 to 0.264 mg/kg at preharvest intervals of 0.5, 1, and 3 days. These values are lower than the maximum residue limit of 1 mg/kg in strawberry set by the Codex Alimentarius Commission.  相似文献   

9.
A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases.  相似文献   

10.
The dynamic and residues of florasulam and flumetsulam in corn field ecosystem were investigated using quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limits of quantification (LOQs) of the proposed method ranged from 0.005 to 0.01 mg/kg. Mean recoveries and relative standard deviations (RSDs) of the two compounds in all samples at three spiking levels ranged 94–110 % and 2.0–9.2 %, respectively. Florasulam and flumetsulam degradation followed first-order kinetics with half-lives 1.7–2.9 and 3.3–8.7 days in soil and 1.3–1.8 and 0.9–1.7 days in plant, respectively. The residues in all the samples were found to be less than the LOQs at preharvest intervals of 53 and 78 days. The results suggest that the combined use of florasulam and flumetsulam on corn is considered to be safe under the recommended conditions and can be utilized for establishing the maximum residue limit (MRL) of florasulam in corn in China.  相似文献   

11.
The dissipation, residues, and risks of 2,4-dicholrophenoxyacetic acid (2,4-d) in citrus under field condition were investigated based on a simple ultra-performance LC (UPLC)-MS/MS method. The results indicated that the residue level of 2,4-d in citrus did not degrade gradually with sampling time under field condition. At pre-harvest intervals (PHI) of 20–40 days, 2,4-d residues were 0.021–0.269 mg/kg in citrus flesh, 0.028–0.337 mg/kg in whole citrus, and 0.028–0.376 mg/kg in citrus peel, all bellow the China maximum residue limit in citrus (1 mg/kg). Risks of 2,4-d were assessed by calculation of risk quotient, and the results revealed no significant health risks after consumption of citrus.  相似文献   

12.
Cyhalofop-butyl is an aryloxyphenoxypropionate postemergence herbicide with good control of barnyard grass in rice paddies. In this study, method for the determination of cyhalofop-butyl and its metabolite was developed with high-performance liquid chromatography tandem mass spectrometry. Dissipation and residue levels of cyhalofop-butyl and its metabolite in rice ecosystems were also investigated. Recoveries and relative standard deviations of cyhalofop-butyl and cyhalofop acid in six matrices at three spiking levels ranged from 76.1 to 107.5 % and 1.1 to 8.2 %, respectively. The limit of quantitation (LOQ) of cyhalofop-butyl and cyhalofop acid was 0.01 mg/kg in paddy water, paddy soil, rice plant, rice straw, rice hulls, and husked rice. For field experiments, the results showed that cyhalofop-butyl degraded to cyhalofop acid quickly, and the half-lives of cyhalofop acid in paddy water, paddy soil, and rice plant were 1.01–1.53, 0.88–0.97, and 2.09–2.42 days, respectively. Ultimate residues of cyhalofop-butyl and its metabolite in the rice samples were not detectable or below 0.01 mg/kg at harvest.  相似文献   

13.
Prediction of residual concentrations of applied pesticides during the pre-harvest period may be required to ensure the safety of agricultural products. In this study, time-dependent dissipation trends of carbaryl (CB), kresoxim-methyl (KM), flubendiamide (FB), flufenoxuron (FN), bitertanol (BT), and chlorantraniliprole (CN) applied to apples at recommended and threefold greater doses were modeled to estimate pre-harvest residue limit concentrations (CPHRL) indicating permissible pesticide concentrations during the pre-harvest period. Double-exponential (DE) model results best fit the dissipation trends of all tested pesticides (correlation coefficients of 0.91–0.99) compared to zero-, first-, and second-order models. Among the pesticides examined, CB half-lives in apples of 2.9 and 6.6 days were the shortest, while those of FN (21.1–32.7 days) were the longest. The CPHRL values for each pesticide in apples were estimated with DE model parameter values and could be used to determine harvest dates for safe apples with pesticide concentrations below their maximum residue limits. Application of the DE model for CPHRL calculation provides more accurate information for farmers to produce agricultural products safe from pesticide residues.  相似文献   

14.
The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg?1) and detection (0.0005 mg kg?1) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001–0.5 mg kg?1) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT50 of S-MET calculated according to the first-order kinetics model was 11.1–14.7 days (soil) and 9.6–13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.  相似文献   

15.
Dissipation, residues, and risk assessment of spirodiclofen in citrus   总被引:1,自引:0,他引:1  
The dissipation, residues, and distribution of spirodiclofen, a new type of insecticide and acaricide that belongs to the class of ketoenols or tetronic acids, in citrus were investigated in this study. Risk assessment of sprodiclofen was also conducted based on those data. The open-field experiments were conducted in Guangdong, Fujian, and Guangxi of China. Results showed that the half-lives in citrus ranged from 6.5 to 13.6 days at three sites. The terminal residues of spirodiclofen were all below the FAO/WHO maximum residue limit of 0.5 mg/kg in citrus, when they were determined 14 days after final application. Distribution of spirodiclofen in peel and flesh was analyzed, and residues were found to be concentrated on peel. Risk assessment was performed by calculation of risk quotient, which showed that the use of spirodiclofen is comparably safe for humans.  相似文献   

16.
Chlorantraniliprole, an anthranilic diamide insecticide with novel mode of action is found effective against several lepidopteran as well as coleopteran, dipteran, and hemipteran pests. The present studies were carried out to study the dissipation pattern of chlorantraniliprole on cauliflower and to suggest suitable waiting period for the safety of consumers. Quick, easy, cheap, effective, rugged, and safe method was used for the extraction and cleanup of samples and the residues of chlorantraniliprole were estimated using high-performance liquid chromatograph (HPLC) and confirmed by liquid chromatograph–mass spectrometer and high-performance thin layer chromatograph. Following three applications of chlorantraniliprole (Coragen 18.5 SC) at recommended dose (9.25 g a.i.?ha?1) and double the recommended dose (18.50 g a.i.?ha?1), the average initial deposits of chlorantraniliprole were observed to be 0.18 and 0.29 mg kg?1, respectively. These deposits were found to be less than the maximum residue limit of 2.0 mg kg?1 prescribed by the Codex Alimentarius Commission. These residues dissipated below the limit of quantification of 0.10 mg kg?1 after 3 and 5 days at recommended and double the recommended dosages, respectively. The half-life value (T 1/2) of chlorantraniliprole was worked out to be 1.36 days following its application at recommended dosages. Hence, the use of this pesticide at recommended dosages does not seem to pose any risk, and a waiting period of 1 day is suggested for safe consumption of cauliflower curds.  相似文献   

17.
An integrated method for the simultaneous determination of insecticide fipronil and its three metabolites, desulfinyl, sulfide, and sulfone, in maize grain, maize stem, and soil was developed. This three-step method uses liquid–solid extraction with ultrasound or mechanical grinding, followed by liquid–liquid partitioning and florisil solid-phase extraction (SPE) for cleanup. The quantification was conducted by gas chromatography–electron capture detection in triplicate for each sample. The method was validated with five replicates at three fortification concentrations, 0.002, 0.01, and 0.1 mg kg?1, in each matrix and gave mean recoveries from 83 to 106 % with relative standard deviation ≤8.9 %. The limits of quantification (LOQ) were 0.002 mg kg?1 for the compounds in all matrixes. In the field study in Beijing and Shandong 2012, fipronil-coated maize seeds were planted and the proposed method was applied for checking the possible existence of four compounds in maize and soil samples, but none of them contained residues higher than the LOQs in both application rates. Moreover, the dissipation of fipronil in soil fits first-order kinetics with half-lives 9.90 and 10.34 days in Beijing and Shandong, respectively. Combined with an adequate sample treatment, this technique offers good sensitivity and selectivity in the three complex matrixes. The results could provide guidance for the further research on pesticide distribution and safe use of fipronil as seed coat in cereals.  相似文献   

18.
The analytical method of famoxadone residue and its dissipation in grape and soil were investigated. Famoxadone (68.75% water-dispersible granule) was applied at two dosages (1.25 and 2.5 g l???1). Soil and grape samples were collected at intervals and analyzed for famoxadone residues. The results showed that the degradation rate of famoxadone in grape and soil were similar, and their dynamics could be described by C?=?1.1738e ???0.0562t with correlation coefficient r?=?0.9044 in grape and C?=?5.6565e ???0.0515t with r?=?0.9620 in soil, respectively. Half-lives were 12.3 and 13.5 days in grape and soil, respectively. The results indicated that at harvest time, the residues of famoxadone in grape were well below the EU’s maximum residue level (2 mg kg???1) and was safe to apply in grape.  相似文献   

19.
The health risk to humans of pesticide application on minor crops, such as strawberry, requires quantification. Here, the dissipation and residual levels of three fungicides (pyraclostrobin, myclobutanil, and difenoconazole) were studied for strawberry under greenhouse conditions using high-performance liquid chromatography (HPLC)-tandem mass spectrometry after Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. This method was validated using blank samples, with all mean recoveries of these three fungicides exceeding 80 %. The residues of all three fungicides dissipated following first-order kinetics. The half-lives of pyraclostrobin, myclobutanil, and difenoconazole were 1.69, 3.30, and 3.65 days following one time application and 1.73, 5.78, and 6.30 days following two times applications, respectively. Fungicide residue was determined by comparing the estimated daily intake of the three fungicides against the acceptable daily intake. The results indicate that the potential health risk of the three fungicides was not significant in strawberry when following good agricultural practices (GAP) under greenhouse conditions.  相似文献   

20.
Dissipation behavior, final residue, and risk assessment of butralin in soybean, green soybean, plant, and soil were investigated. Butralin residues were extracted with acetonitrile and then soybean samples were detected with gas chromatography-mass spectrometer (GC-MS) and soil samples were determined with GC with nitrogen phosphorous detector (GC-NPD). The limit of quantification (LOQ) of the method was 0.01 mg/kg for soybean, green soybean, plant, and soil. Average recoveries ranged from 90.4 ~ 98.2% for green soybean, 86.2 ~ 86.6% for soybean, 86.0 ~ 98.8% for plant, and 85.0 ~ 106.8% for soil. The relative standard deviations (RSDs) were 2.0 ~ 7.2% for green soybean, 2.0 ~ 3.0% for soybean, 3.1 ~ 8.1% for plant, and 1.8 ~ 6.6% for soil. Half-lives of butralin in soil samples varied in the range of 11–22 days. At harvest time, final residues of butralin in soybean and green soybean were lower than LOQ. Risk assessment demonstrated that, at recommended dosage and frequency, butralin would not induce significant harm on humans. The study could be used as a quantitative basis for application of butralin on soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号