首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissipation and residues of bispyribac-sodium in rice cropping system were studied. Bispyribac-sodium residues were extracted by a simple analytical method based on QuEChERs and detected by LC-MS/MS. The limit of detection for bispyribac-sodium of this method was 0.375?×?10?3 ng. The limit of quantification (LOQ) was 5.0 μg/kg for rice plant samples, 2.0 μg/kg for rice hull, 0.2 μg/kg for water, and 0.1 μg/kg for soil and husked rice samples. The average recoveries of bispyribac-sodium ranged from 74.7 to 108 %, with relative standard deviations less than 13 %. The half-lives of bispyribac-sodium in rice plant, water, and soil were in the range of 1.4–5.6 days. More than 90 % of bispyribac-sodium residue dissipated within 5 days. The final residues of bispyribac-sodium in rice were all below LOQ at harvest time.  相似文献   

2.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

3.
Cyhalofop-butyl is an aryloxyphenoxypropionate postemergence herbicide with good control of barnyard grass in rice paddies. In this study, method for the determination of cyhalofop-butyl and its metabolite was developed with high-performance liquid chromatography tandem mass spectrometry. Dissipation and residue levels of cyhalofop-butyl and its metabolite in rice ecosystems were also investigated. Recoveries and relative standard deviations of cyhalofop-butyl and cyhalofop acid in six matrices at three spiking levels ranged from 76.1 to 107.5 % and 1.1 to 8.2 %, respectively. The limit of quantitation (LOQ) of cyhalofop-butyl and cyhalofop acid was 0.01 mg/kg in paddy water, paddy soil, rice plant, rice straw, rice hulls, and husked rice. For field experiments, the results showed that cyhalofop-butyl degraded to cyhalofop acid quickly, and the half-lives of cyhalofop acid in paddy water, paddy soil, and rice plant were 1.01–1.53, 0.88–0.97, and 2.09–2.42 days, respectively. Ultimate residues of cyhalofop-butyl and its metabolite in the rice samples were not detectable or below 0.01 mg/kg at harvest.  相似文献   

4.
The dynamic and residues of florasulam and flumetsulam in corn field ecosystem were investigated using quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limits of quantification (LOQs) of the proposed method ranged from 0.005 to 0.01 mg/kg. Mean recoveries and relative standard deviations (RSDs) of the two compounds in all samples at three spiking levels ranged 94–110 % and 2.0–9.2 %, respectively. Florasulam and flumetsulam degradation followed first-order kinetics with half-lives 1.7–2.9 and 3.3–8.7 days in soil and 1.3–1.8 and 0.9–1.7 days in plant, respectively. The residues in all the samples were found to be less than the LOQs at preharvest intervals of 53 and 78 days. The results suggest that the combined use of florasulam and flumetsulam on corn is considered to be safe under the recommended conditions and can be utilized for establishing the maximum residue limit (MRL) of florasulam in corn in China.  相似文献   

5.
A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78–92% at the minimum detectable concentration of 0.003 μg g???1. Analysis showed 0.015 and 0.005 μg g???1 residues of oxyfluorfen at 250 g a.i. ha???1 rate in green and mature onion samples, respectively; however, at 500 g a.i.ha???1 rates, 0.025 and 0.011 μg g???1 of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 μg g???1 of oxyfluorfen residues at the doses 250 and 500 g a.i. ha???1, respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested.  相似文献   

6.
Pesticide residues in vegetable samples from the Andaman Islands, India   总被引:2,自引:0,他引:2  
Vegetable samples of brinjal, okra, green chilli, crucifers, and cucurbits collected from farmers' field were tested for the presence of organochlorine (OC), organophosphorus (OP), and synthetic pyrethroid (SP) compounds using a gas chromatograph equipped with electron capture and flame thermionic detectors. Of the samples tested, 34.0 % were found to have pesticide residues. Among the OC compounds, α-endosulfan, β-endosulfan, and endosulfan sulfate were detected in 14.5 % of the samples with residues. These were taken from crucifer, okra, green chilli, and cucurbit samples. SP compound residues, such as α-cypermethrin, fenvalerate I, fluvalinate I, deltamethrin, and λ-cyhalothrin were detected in 32 % of the samples with residues. OP compound residues such as chlorpyrifos, profenofos, monocrotophos, triazophos, ethion, dimethoate, and acephate were found in 54 % of the samples with residues, which were taken from all vegetable samples. Of the positive samples, 15.3 % were found to contain residues exceeding the prescribed maximum residue limit. The average pesticide residue content across all the vegetable samples was 0.108 ppm, with values ranging from 0.008 to 2.099 ppm. Multiple residues of more than one compound were detected in 34.1 % of samples containing residues.  相似文献   

7.
An integrated method for the simultaneous determination of insecticide fipronil and its three metabolites, desulfinyl, sulfide, and sulfone, in maize grain, maize stem, and soil was developed. This three-step method uses liquid–solid extraction with ultrasound or mechanical grinding, followed by liquid–liquid partitioning and florisil solid-phase extraction (SPE) for cleanup. The quantification was conducted by gas chromatography–electron capture detection in triplicate for each sample. The method was validated with five replicates at three fortification concentrations, 0.002, 0.01, and 0.1 mg kg?1, in each matrix and gave mean recoveries from 83 to 106 % with relative standard deviation ≤8.9 %. The limits of quantification (LOQ) were 0.002 mg kg?1 for the compounds in all matrixes. In the field study in Beijing and Shandong 2012, fipronil-coated maize seeds were planted and the proposed method was applied for checking the possible existence of four compounds in maize and soil samples, but none of them contained residues higher than the LOQs in both application rates. Moreover, the dissipation of fipronil in soil fits first-order kinetics with half-lives 9.90 and 10.34 days in Beijing and Shandong, respectively. Combined with an adequate sample treatment, this technique offers good sensitivity and selectivity in the three complex matrixes. The results could provide guidance for the further research on pesticide distribution and safe use of fipronil as seed coat in cereals.  相似文献   

8.
In the environment, plants and animals in vivo, pesticides can be degraded or metabolized to form transformation products (TPs) or metabolites, which are even more toxic than parent pesticides. Hence, it was necessary to evaluate residue and risk of pesticides and their TPs (or metabolites). Here, a rapid, simple, and reliable method using QuEChERS and LC-MS/MS had been developed for simultaneous analysis of prothioconazole and its toxic metabolite, prothioconazole-desthio, in soil, wheat plant, straw, and grain. The average recoveries of prothioconazole and prothioconazole-desthio in four matrices ranged from 86 to 108% with relative standard deviations (RSDs) of 0.53–11.87% at three spiking levels. The method was successfully applied to investigate the dissipation and terminal residues of the two compounds in wheat field. It was shown that prothioconazole was rapidly degraded to prothioconazole-desthio, with half-lives below 5.82 days. Prothioconazole-desthio was slowly dissipated in soil and plant. The terminal residues of prothioconazole in wheat grain with a pre-harvest interval (PHI) of 21 or 28 days were below the maximum residue limits (MRLs) (0.1 mg/kg, Codex Alimentarius Commission (CAC)). We also evaluated the intake risk of prothioconazole-desthio residues in wheat grain in China. For long-term intake assessment, the hazard quotients (HQ) ranged from 1.30 to 5.95%. For short-term intake assessment, the acute hazard indexes (aHI) ranged from 1.94 to 18.2%. It indicated that the intake risk of prothioconazole-desthio in wheat consumption was acceptable. Thus, the prothioconazole application on wheat with the scientific practices would not pose public health risk.  相似文献   

9.
A simple residue analytical method using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure for the determination of trifloxystrobin and its metabolite trifloxystrobin acid (CGA321113) in tomato and soil was developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limits of detection were 0.0005 mg/kg for trifloxystrobin and 0.001 mg/kg for trifloxystrobin acid, respectively. The average recoveries in tomato and soil ranged from 73–99 % for trifloxystrobin and 75–109 % for trifloxystrobin acid, with relative standard deviations below 15 %. The method was then used to study the dissipation and residues in tomato and soil. The dissipation half-lives of trifloxystrobin in tomato were 2.9 days (Beijing) and 5.4 days (Shandong), while in soil were 1.9 days (Beijing) and 3.0 days (Shandong), respectively. The final results showed that the major residue compound was trifloxystrobin in tomato whereas it was its metabolite, trifloxystrobin acid, in soil. The final residues of total trifloxystrobin (including trifloxystrobin acid) were below the EU maximum residue limit of 0.5 mg kg?1 in tomato 3 days after the treatment.  相似文献   

10.
This paper reports the results of a pesticide monitoring survey on wine grapes from the 2008–2010 vintage from vineyards grown according to integrated pest management strategies. A multi-residue gas chromatography-mass spectrometry method in electron ionization and chemical ionization mode has been used for the determination of 30 pesticides in wine samples. The analytical method showed good recoveries and allowed a good separation of the selected pesticides. Repeatability and intermediate precision showed good results with CV?<?20 %. The instrumental method limits of determination (LOD) and of quantification (LOQ) were below the maximum residue levels set in wine. The analysis of the wines showed that pesticide residues were below the instrumental LOQ, and most of them were undetectable (<LOD). Only the 38 % of the pesticide applied has been detected in at least one cultivar. Metalaxil, myclobutanil, and penconazole were the pesticides most frequently found, while carignano and vermentino were the cultivars with the higher number of residues.  相似文献   

11.
The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.  相似文献   

12.
The production of apples in Poland is the largest among the countries of the European Union, and therefore, the consumption of these fruits is high in our country. The aim of this study was to determine the presence of pesticide residues in Polish apples and to assess if these residues pose a risk to the health of the consumer. Furthermore, compliance with legal regulations concerning the use of plant protection products in crop cultivation was ascertained. Pesticide residues were found in 192 samples (61.5 % of tested samples). In six samples (1.9 %), residues exceeded maximum residue limits. Violations concerned the insecticides: indoxacarb, diazinon and fenitrothion. The highest long-term consumer exposure was found in the case of consumption of apples with diazinon residue for both groups, adults and toddlers [4 % acceptable daily intake (ADI), adults; 21 % ADI, toddlers]. The highest values of short-term exposure were obtained in the case of consumption of apples with indoxacarb [5 % acute reference dose (ARfD), adults; 27 % ARfD, toddlers] and fenitrothion (4 % ARfD, adults; 23 % ARfD, toddlers). Although fungicides are the pesticides found most often in apples, the consumption of apples with insecticide residues constitutes the greatest hazard to human health.  相似文献   

13.
Persistence of cypermethrin, deltamethrin, profenofos, and triazophos in cauliflower curd was studied, following application of two premix formulations viz: Roket 44EC (profenofos 40 % + cypermethrin 4 %) and Anaconda Plus 36EC (triazophos 35 % + deltamethrin 1 %) at recommended (1.0 L ha?1) and double doses (2.0 L ha?1). In the case of Roket 44EC, residues of cypermethrin dissipated with the half-life values of 1.5–2.1 days, whereas residues of profenofos dissipated with the half-life of 2.9–3.3 days on cauliflower curd. In the case of Anaconda, residues of triazophos and deltamethrin dissipated from curd with the half-life values of 2.6–3.0 and 2.2–2.6 days, respectively. Both the combination mix significantly reduced the aphid population up to 14 days after spray and increased the yield by 155–160 % over control. Anaconda (2.0 L ha?1) treated plots yielded the highest number of marketable curds. Based on risk assessment analysis, safe waiting period of 3 and 5 days has been suggested for Roket 44EC and Anaconda Plus 36EC, respectively, in cauliflower at recommended dose of application.  相似文献   

14.
The persistence and metabolism of imidacloprid in soil under sugarcane were studied following application of imidacloprid at 20 and 80 g active ingredient (a.i.) ha?1. Soil samples were collected at different time intervals (7, 15, 30, 45, 60 and 90 days after application), and the residues of imidacloprid and its metabolites (6-chloronicotinic acid, nitrosimine, imidacloprid-NTG, olefin, urea and 5-hydroxy) were quantified by high-performance liquid chromatography. In soil, the total imidacloprid residues were mainly constituted by the parent compound followed by 6-chloronicotinic acid, nitrosimine and imidacloprid-NTG metabolites. Maximum residues of imidacloprid and its metabolites were 4.29 and 7.81 mg kg?1 in soil samples collected 7 days after the application of imidacloprid at 20 and 80 g a.i. ha?1, respectively. At both doses, these residues declined to below the detectable limit in soil after 90 days of application. Olefin, urea and 5-hydroxy metabolites were not detected in soil. Dissipation of total imidacloprid residues did not follow the first-order kinetics with a coefficient of determination value of 0.883 and 0.838 for the recommended dose and four times the recommended dose, respectively. The half-life (T 1/2) value of total imidacloprid was observed to be 10.64 and 10.10 days for the recommended dose and four times the recommended dose, respectively.  相似文献   

15.
Fipronil belongs to phenylpyrazole class of chemical compounds. Degradation of fipronil in sandy loam soil was investigated under field conditions by applying fipronil (Regent 5 % SC) at 50 (T 1) and 100 g a.i. ha?1 (T 2) in field. Samples were drawn periodically in triplicate on 0 (1 h after treatment), 1, 3, 7, 10, 15, 30, 60, and 90 days after treatment and analyzed on GC-ECD system equipped with capillary column. The residues of fipronil in both the doses dissipated in the range of 93.33–100 % in 90 days. Limit of detection (LOD) and limit of determination (LODe/LOQ) were 0.0003 and 0.001 mg kg?1, respectively. Dissipation followed a biphasic first-order kinetics with half-life values of 10.81 and 9.97 days for fipronil alone and 8.14 and 13.05 days for fipronil along with metabolites in soil at (T 1) and (T 2) treatments, respectively.  相似文献   

16.
The integrated pest management (IPM) modules of pesticide schedule on Basmati rice were validated at field experiments conducted in Northern India for consecutive 3 years (2005–2008). The pesticide residues were found below the detectable limit (<0.01–0.001 mg/kg) in soil and irrigation water samples of Kaithal region. In Dehra Dun region of Uttrakhand, the residues of carbendazim in rice grains and soil were detected below <0.01 mg/kg level. In second year experiments (2006–2007), only four non-IPM soil samples indicated the presence of chlorpyrifos and endosulfan in the range of ND <0.001 to 0.07 mg/kg, out of 45 samples analyzed. Carbendazim applied as seed treatment at Dehradun and Kaithal field trials was found below detectable limit in both IPM and non-IPM rice grains (<0.01 mg/kg) and irrigation water (0.01 μl/ml). Chlorpyrifos was detected in five water samples from Kaithal and one from Pant Nagar in the range of 0.003–0.006 μl/L, α- and β-isomer of endosulfan in the range of 0.005–0.03, and 0.005–0.02 μl/ml, respectively, in one sample from Pant Nagar and two from Kaithal, out of a total of 22 samples. In the region of Uttrakhand and Uttar Pradesh during 2007–2008, four non-IPM samples of soil indicated trace levels of endosulfan, out of 16 samples analyzed. The residues were detected below detection limit for carbendazim (<0.01 mg/kg) in soil samples of Dehradun IPM fields and for endosulfan and carbendazim (0.001–0.01 μl/L) in water samples each from IPM and non-IPM fields of Uttar Pradesh. The results of 3-year trials of IPM module indicated basmati rice as safe and economical with pesticide residue-free rice grains.  相似文献   

17.
Pesticide residue analysis of soil,water, and grain of IPM basmati rice   总被引:1,自引:0,他引:1  
The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008–2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (<0.001–0.05 μg/g) in all 24 samples of rice grains and soil under IPM and non-IPM trials. Residues were below detection level (<0.001–0.05 μg/L) in irrigation water samples (2008–09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (<0.001–0.05 μg/g) in all 40 samples of Basmati rice grains and soil. It was also observed as BDL (<0.001–0.05 μg/L) for 12 water samples (2009–2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (<0.001–0.05 μg/g) in 40 samples of Basmati rice grains and soil and 12 water samples (<0.001–0.05 μg/L) (2010–2011).  相似文献   

18.
A simple and accurate method for the determination of bismerthiazol and its metabolite 2-amino-5-mercapto-1,3,4-thiadiazole was developed in Chinese cabbage and soil by high-performance liquid chromatography-diode array detection in this study. The limits of detection were 0.06 mg/kg for bismerthiazol and 0.03 mg/kg for 2-amino-5-mercapto-1,3,4-thiadiazole, respectively. Recoveries of cabbage and soil were investigated at three spiking levels and were in the range of 84.0–96.0 % for bismerthiazol and 71.0–74.6 % for 2-amino-5-mercapto-1,3,4-thiadiazole, with relative standard deviations below 7.0 %. For field experiments, the half-life of bismerthiazol was 2.4–2.5 days in Chinese cabbage and 2.5–4.8 days in soil at the two experimental locations in China. Dissipation residues of 2-amino-5-mercapto-1,3,4-thiadiazole were lower than 0.72 mg/kg. Terminal residues of bismerthiazol and its metabolite were less than 3.0 and 0.3 mg/kg in Chinese cabbage, respectively. No bismerthiazol or metabolite residues were detected in soil on days 5, 7, 10, and 14 after the last spraying at the two dosage levels.  相似文献   

19.
Supervised field trials were conducted at four different agro-climatic locations of India to evaluate the dissipation pattern and risk assessment of spiromesifen on tomato. Spiromesifen 240 SC was sprayed on tomato at 150 and 300 g a.i.?ha?1. Samples of tomato fruits were drawn at 0, 1, 3, 5, 7, 10 and 15 days after treatment and soil at 15 days after treatment. Quantification of residues was done on gas chromatograph–mass spectrophotometer in selective ion monitoring mode in the mass range of 271–274 (m/z). The limit of quantification of the method was found to be 0.05 mg kg?1, while the limit of determination was 0.015 mg kg?1. Residues were found below the LOQ of 0.05 mg kg?1 in 10 days at both the doses of application at all the locations. Spiromesifen dissipated with a half-life of 0.93–1.38 days at the recommended rate of application and 1.04–1.34 days at the double the rate of application. Residues of spiromesifen in soil were detectable level (<0.05 mg kg?1) after 15 days of treatment. A preharvest interval (PHI) of 1 day has been recommended on tomato on the basis of data generated under All India Network Project on Pesticide Residues. Spiromesifen 240 SC has been registered for its use on tomato by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of spiromesifen on tomato has been fixed by Food Safety Standard Authority of India, Ministry of Health and Family Welfare, Government of India as 0.3 μg/g after its risk assessment.  相似文献   

20.
The aim of the present work is the assessment of a new sorbent, prepared using silica gel coated with a pyrimidine derivative (allyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate), for extraction and preconcentration trace amount of lead from different samples prior to determination by flame atomic absorption spectrometry. Common coexisting ions did not interfere with the separation and determination of lead at pH?6, so that lead ion completely adsorbed on the column. The limit of detection based on three times the standard deviation of the blank was found to be 0.53 ng?mL?1 in original solution. Obtained sorption capacity for 1 g sorbent was 5.0 mg Pb. The linearity was maintained in the concentration range of 0.1–30.0 ng?mL?1 for the concentrated solution. Eight replicate determinations of 2.0 μg?mL?1 of lead in the final solution gave relative standard deviation of ±2.6 %. The proposed method was successfully applied to the determination trace amounts of lead in the environmental samples such as carrot, rice, zardchoobe, and real water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号