首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface tissue of the reef coral Pocillopora capitata contained approximately 34% lipid on a dry weight basis. Of this, 75% was storage lipid (wax ester and triglyceride) and 25% structural (phospholipid, galactolipid, etc.). Based on chlorophyll a: lipid ratios of intact coral and isolated zooxanthellae, it was determined that over 90% of the storage lipid resided in the host tissue. One half of the structural lipids was found in the host and the other in the symbiotic algae. Gentle fractionation of coral tissue indicated that zooxanthellae possessed less than 14% of the total coral protein. Coral tips and isolated zooxanthellae were incubated with sodium acetate-1-14C in light and dark to obtain lipogenic rates and proportions of fatty acids and lipid classes synthesized. The rate of lipid synthesis from acetate-1-14C by intact coral was stimulated three-fold in the light (1200 lux), which indicated that the majority of coral lipogenesis occurred in the zooxanthellae. Intact coral triglycerides contained ca. 68% of the 14C-activity and wax esters ca. 21%. Zooxanthellae isolated by the Water Pik technique synthesized negligible amounts of wax ester, which implied that wax ester synthesis was a property of the animal tissue. Isolated zooxanthellae and intact coral synthesized identical triglyceride fatty acids from acetate-1-14C. This study provides evidence for a carbon cycle between host and symbiont whereby the zooxanthellae take up host-derived carbon (probably in the form of acetate), synthesize fatty acids using their photosynthetically derived energy, and return the lipid to the host where it appears as wax ester and triglyceride.  相似文献   

2.
Compensation point and light-saturation values were determined from oxygen-exchange experiments with branches and isolated zooxanthellae from the staghorn coral Acropora acuminata. Branches and dense suspensions of zooxanthellae showed similar lightresponse curves for oxygen exchange, with light saturation at about 23 Klux (300 W. m-2) and compensation point occurring between 4 and 6 Klux (60–80 W. m-2). Zooxanthellae appear to be mutually shaded in dense suspensions and coral tissues. The effects of metabolic inhibitors, including photosynthetic and respiratory inhibitiors, on oxygen exchange in coral branches and isolated zooxanthellae are presented. Bubbles formed on coral tissues and on several macroalgae under conditions of high illumination contained large amounts of oxygen, suggesting that a high oxygen tension may occur in coral tissues during the day. Photorespiration and dissolved organic carbon production by suspensions of zooxanthellae are discussed in relation to a high oxygen tension which probably occurs in coral tissues during daylight.  相似文献   

3.
Ultrastructural evidence is presented of a chromatophoresystem in the zooxanthellae containing hermatypic, deep-water coral Leptoseris fragilis (Milne Edwards and Haime). It consists of multilobed cells which mainly occupy the intercellular space of the oral gastrodermis. The cellular processes are filled with electron-dense granules up to 1-m-long and 0.5-m-wide. Within the cytoplasm an elaborate system of microtubules is established. The ramifications of the pigment cells, containing the pigment granules, form a dense and nearly continuous layer close to the overlying zooxanthellae. It is speculated that host pigments may transform the violet portion of the incident light into longer wavelengths, thus increasing the photosynthetic efficiency of the zooxanthellae.  相似文献   

4.
Studies were carried out to determine optimum conditions for the investigation of symbiotic zooxanthellae in vitro and to gain insight into factors influencing release of photosynthate by the symbionts. Zooxanthellae isolated from the reef coral Agaricia agaricites and incubated with an homogenate of host tissue release twice as much photosynthate as controls in seawater. The animal homogenate retained its stimulatory activity for 3 h at room temperature (ca. 26°C). Release of photosynthate was markedly influenced by time after isolation of algae from the host, variation in homogenate concentration, and prolonged exposure to homogenate. Release was not influenced by cell concentration, light intensity, or glycerol in the incubation medium. If zooxanthellae are labelled in vitro with glucose 14C, the principle product released is alanine 14C. The mechanism of action of homogenate on zooxanthellae in vitro is discussed in terms of its effect on algal cell membrane permeability. A preliminary fractionation of host homogenate is described.  相似文献   

5.
Damage to zooxanthellae photosynthetic apparatus has been proposed to be the underlying mechanism of coral bleaching, but how the expulsion of zooxanthellae is triggered is still not understood. The present study compared the photosystem II (PSII) functioning and overall photosynthesis of retained and released zooxanthellae from the reef-building coral Galaxea fascicularis exposed to high temperature stress. The use of pulse-amplitude-modulated (PAM) fluorometry for isolated zooxanthellae was validated and used to measure photosynthesis. There was no significant difference in PSII functioning and the overall photosynthesis between retained zooxanthellae, which were isolated immediately after stress treatment, and those released from the coral exposed to either 30 or 32°C, while the zooxanthellae population released at 28°C showed significantly lower PSII functioning than those retained in the polyps. The release of healthy-looking zooxanthellae by polyps exposed to elevated temperatures was significantly higher than those in the control (28°C). Higher release of undischarged cnidae, indicative of host cell necrosis or detachment, was observed in 32°C treatments. These findings indicate that the zooxanthellae released in 30 or 32°C treatments exhibited normal morphology and intact photosynthetic activity. The present results strongly suggest that the release of zooxanthellae from G. fascicularis at 30 or 32°C is a non-selective process with respect to the zooxanthellar PSII functioning and thus the host seems to be the first partner to be physiologically affected in temperature-induced bleaching.Communicated by T. Ikeda, Hakodate  相似文献   

6.
Photoadaptations of zooxanthellae living within the deep water coral Leptoseris fragilis taken from the Gulf of Aqaba (Red Sea) were studied. Specimens-collected in summer 1988 between 110 and 120 m depth —were transplanted to 70 and 160 m. At each depth individuals were exposed in their natural growth position (oral side facing the surface) or in a reverse growth position (oral side facing the bottom). After 1 yr of exposure the corals were collected and the zooxanthellae were isolated. As a function of the availability of light with depth and growth position several algal parameters showed changes which are related to photoadaptations. The relatively low density of zooxanthellae of 0.15x106 cellsxcm-2 at a natural growth depth of 116 m decreased to 0.0034x106 cellsxcm-2 (2%) at 160 m in specimens growing with a natural orientation. In corals with a downward-facing oral surface at the same depth (160 m) only degenerated algae could be observed. With respect to depth dependence the volume of the algae decreased from 728 m3 at 116 m to 406 m3 at a depth of 160 m and the content of pigments increased. The augmentation of peridinin per cell was low (two times at 160 m compared to 116 m). Chlorophyll a and in particular chlorophyll c 2 concentrations per cell were enhanced. Compared to natural amounts at 116 m, chl a was five times and chl c 2 eight times higher at 160 m. At all depths the chl c 2 content per cell was higher than for chl a. The formation of chl a/chl c 2 complexes as light harvestor is discussed. Light harvesting, with chl c 2 prevailing may be explained as a special type of chromatic adaptation of L. fragilis in a double sense: (1) in the habitat light short wavelengths predominate. This light can be directly absorbed with pigments such as chl a and chl c 2. (2) Host pigments absorb visible violet light and transform these wavelengths, less suitable for photosynthesis, into longer ones by means of autofluorescence. The emitted longer wavelengths fit the absorption maxima of the algal pigments. Thus the host supports photosynthesis of his symbionts. Corals exposed at 160 m depth with a downward facing oral surface were alive after 1 yr and the host wavelength transforming pigment system was still present, but zooxanthellae were absent or degenerated. The light field at 160 m seems therefore to be critical: the combined photoadaptations of host and symbionts, allowing photosynthesis under barren light conditions, seem to be exhausted. In L. fragilis the photoadaptive strategies of host and symbionts cooperate harmoniously. In addition, the adaptations are interlocked with the particular light situation of the habitat with respect to light quantity and quality. The cooperation of physical and organismic parameters examplifies how evolution and, in particular, coevolution has led to optimal fitness.  相似文献   

7.
Corallimorpharians may dominate some habitats on coral reefs and compete with stony corals for access to light, yet little is known concerning their photosynthetic traits. At Eilat in the northern Red Sea, we observed that the abundance of individuals of the corallimorpharian Rhodactis rhodostoma decreased significantly with depth on the reef slope. Field and laboratory experiments revealed that they employ several mechanisms of photoadaptation to high irradiance on the shallow reef flat. Their endosymbiotic microalgae (zooxanthellae) varied significantly in both abundance and chlorophyll content with level of irradiance. Use of a diving pulse amplitude modulated fluorometer revealed that the zooxanthellae of R. rhodostoma effectively disperse excess light energy by expressing significantly higher values of non-photochemical quenching and maximum excitation pressure on photosystem II when experimentally exposed to high light (HL) versus low light (LL). Host corallimorpharian tissues mediated this response by shielding the algal symbionts from high irradiance. The endoderm of host tentacles thickened significantly and microalgal cells were located further from the mesoglea in HL than in LL. The clades of zooxanthellae hosted by the corallimorpharians also varied with depth. In shallow water, all sampled individuals hosted clade C zooxanthellae, while in deep water the majority hosted clade D. The photosynthetic output of individuals of R. rhodostoma was less affected by HL than was that of a stony coral examined. When exposed to both high temperature (HT) and HL, individuals of R. rhodostoma reduced their maximum quantum yield, but not when exposed to HL at low temperature (LT). In contrast, colonies of the scleractinian coral Favia favus reduced their photosynthetic output when exposed to HL in both temperature regimes. After 2 weeks of HT stress, R. rhodostoma polyps appeared to bleach completely but re-established their zooxanthella populations upon return to ambient temperature. We conclude that mechanisms of photoadaptation to high irradiance employed by both the endosymbiotic zooxanthellae and host corallimorpharians may explain in part the abundance of R. rhodostoma on some shallow reef flats. The ability to survive for weeks at HT while bleached also may allow corallimorpharians to repopulate shallow reef areas where scleractinians have been killed by thermal stress. B. Kuguru and G. Winters contributed equally to this work.  相似文献   

8.
We have assessed the secondary-metabolite chemistry of freshly metamorphosed coral polyps, with and without zooxanthellae, using extremely sensitive electro-spray and Fourier-transform mass spectrometry. Coral larvae of the soft coral Lobophytum compactum of the same genetic background were reared, then inoculated with zooxanthellar strains of different taxonomic and geographic origin, and their terpenoid chemistry analysed. The identification of isolobophytolide in individuals of all treatment groups, including aposymbiotic control polyps, demonstrates that control of terpene production lies with the host coral and not their symbiotic algae. Received: 29 November 1999 / Accepted: 22 November 2000  相似文献   

9.
Pocillopora damicornis (Linnaeus) and Montipora verrucosa (Lamarck) were collected from Hawaiian reefs. In two experiments (September 1979-January 1980: ca. 4 mo; August-October 1980; ca. 2 mo), these reef corals were grown under sunlight passed through filters producing light fields of similar quantum flux but different spectral composition. In vitro cultures of symbiotic zooxanthellae (Symbiodinium microadriaticum Freudenthal) from M. verrucosa were cultured under similar conditions for 15 d. Blue or white light promoted more coral skeletal growth than green or red light. In both coral species, blue light increased the total amount of chlorophyll a of the coral-zooxanthellae association. In the perforate species, M. verrucosa, the pigment concentration was elevated by an increase in the density of zooxanthellae, but the pigment concentrations per algal cell remained unchanged; in the non-perforate species, P. damicornis, it appears that pigment concentration was elevated by an increase in pigment per algal cell, and not by an increase in density of zooxanthellae. The sunloving reef-flat coral P. damicornis did not grow as rapidly as the shade-species M. verrucosa at the low quantum flux (about 10% sunlight) provided by the experimental treatments. The in vitro cultures of zooxanthellae from M. verrucosa exhibited growth rates in light of altered spectral quality that correlated with the responses of the host coral species: blue and white light supported significantly greater growth than green light, and red light resulted in the lowest growth rate.Contribution No. 678 of the Hawaii Institute of Marine Biology  相似文献   

10.
Coral diseases are one of the major factors that alter coral cover and their diversity. We have earlier reported the “Pink-line syndrome” (PLS) in the scleractinian coral Porites lutea wherein a colored band appears between the dead and healthy tissue of a colony. About 20% of the P. lutea colonies were affected in Kavaratti of the Lakshadweep Islands in the Arabian Sea during April 1996 and the incidence increased fourfold within the next 4 years. Fungi were associated in both PLS-affected and healthy specimens, whereas the cyanobacterium Phormidium valderianum occurred exclusively in the PLS-affected specimens. There was an increased expression of a 29 kDa protein without any significant increase in total protein content in the PLS-affected colonies. A reduced number of zooxanthellae and an increase in zooxanthellae size, mitotic index, and chl a concentrations were some of the characteristics of the PLS-affected colonies. PLS induction experiments conducted using selected fungi and the cyanobacterium P. valderianum isolated from the affected colonies and abiotic factors, such as CO2 enrichment and the effect of cyanobacterial photosynthesis inhibition, indicated that the CO2 build-up around the host tissue caused the pink coloration. We hypothesize that these physiological changes disturb the mutualism between the zooxanthellae and the host. When the symbiosis is disturbed by the external CO2, the host loses control over the zooxanthellae, causing their uncontrolled division. This process may lead to a break in photosynthate transfer to the host, thereby resulting in starvation and finally leading to partial mortality. We further hypothesize that these degenerative processes are triggered by the CO2 produced by P. valderianum through its carbon concentration mechanism. In this context, any opportunistic cyanobacteria or other agents having potential to interfere with the physiology of the host or the symbiont can cause such a physiological disorder. The mechanism of PLS formation is an early warning to protect corals as the increasing atmospheric CO2 could induce PLS-like physiological disorder in corals.  相似文献   

11.
Monthly skeletal extension rates were measured in colonies of Montastraea annularis and M. faveolata growing at Mahahual and Chinchorro Bank, in the Mexican Caribbean. Temperature, light extinction coefficient (kd), sedimentation rate, dissolved nutrients and wave energy were used as indicators of environmental conditions for coral growth. Zooxanthella density and mitotic index, nitrogen, phosphorous and protein in coral tissue, and living tissue thickness were measured during periods of high-density-band (HDB) and low-density-band (LDB) formation. To test their value as indirect measures of competition between zooxanthellae and host, as well as coral health and performance in both species, these biological parameters were also measured, during the HDB-formation period, in corals collected at La Blanquilla. This reef is located in the Gulf of Mexico, in an area of suboptimal environmental conditions for coral growth. M. faveolata had a significantly higher skeletal extension rate than M. annularis. Corals growing in Mahahual had significantly higher skeletal extension rate than those living in Chinchorro Bank. This is consistent with inshore–offshore gradients in growth rates observed by other authors in the same and other coral species. This is probably due to less favorable environmental conditions for coral growth in near shore Mahahual, where there is high hydraulic energy and high sedimentation rate. Contrary to observations of other authors, skeletal extension rate did not differ significantly between HDB- and LDB-formation periods for both species of Montastraea. Both species produced their HDB between July and September, when the seawater temperatures are seasonally higher in the Mexican Caribbean. Tissue thickness indicated that environmental conditions are more favorable for coral health and performance during the HDB-formation period. Mitotic index data support the idea that zooxanthellae have competitive advantages for carbon over the host during the LDB-formation period. So, corals, during the LDB-formation period, with less favorable environmental conditions for coral performance and at a disadvantage for carbon with zooxanthellae, add new skeleton with little or no opportunity for thickening the existing one. This results in an equally extended skeleton with lower density, and the stretching response of skeletal growth, proposed for M. annularis growing under harsher environmental conditions, also occurs during the LDB-formation period.Communicated by P.W. Sammarco, Chauvin  相似文献   

12.
P. Dustan 《Marine Biology》1982,68(3):253-264
Zooxanthellae living in colonies of the Caribbean reef coral Montastrea annularis photoadapt to depth-dependent attenuation of submarine light. Studies carried out at Discovery Bay, Jamaica, show that in shallow-living coral colonies, the zooxanthellae appear photoadapted to function at high light intensities, and do poorly if transplanted to low light intensities; in contrast, zooxanthellae in deeper-living coral colonies can be damaged by high light intensities. The adaptation to decreasing light intensity and changing spectral quality appears to be accomplished by increasing the size of the photosynthetic unit (PSU), as opposed to increasing the number of PSU's per cell. Whole cell absorption increases with depth, partially offsetting the loss of light energy due to depth-dependent attenuation. Calculations of photosynthetically usable radiation, the light an alga is capable of absorbing in its own submarine habitat, suggest that the algae at different depths are optimizing rather than maximizing their ability to harvest submarine light energy.  相似文献   

13.
During daytime Plerogyra sinuosa Dana displays globular expandable tentacles (bubbles) which foster the photosynthetic ability of the coral. Adaptational responses of this coral to different depths (5–25 m) and light conditions were investigated by photosynthetic pigment analysis, insitu measurements of oxygen production, transplantation and shading experiments. Pigment concentrations per unit tissue dry weight were variable, but unrelated to depth. Pigment concentrations per zooxanthellae cell remained constant and bubble size increased with depth. Light intensity at 25 m was 20 to 25% of the 5-m value, but daily integrated rates of photosynthesis were 65% of the 5-m rates, indicating a higher light utilization efficiency in deeper corals. Coral heads transplanted from 25 to 5 m died within 20 d if not protected against UV-radiation, but corals transplanted from 5 to 25 m acclimatized to the new light condition. Photosynthetic oxygen production and bubble size increased in shaded, sun-adapted corals within 60 min and decreased in sun-exposed, shade-adapted corals. The variable bubble size is interpreted as an adaptational mechanism to optimize light exposure of zooxanthellae.  相似文献   

14.
Many symbioses involve multiple partners in complex, multi-level associations, yet little is known concerning patterns of nutrient transfer in multi-level marine mutualisms. We used the anemonefish symbiosis as a model system to create a balance sheet for nitrogen production and transfer within a three-way symbiotic system. We quantified diel patterns in excretion of ammonia by anemonefish and subsequent absorption by host sea anemones and zooxanthellae under laboratory conditions. Rates of ammonia excretion by the anemonefish Amphiprion bicinctus varied from a high of 1.84 μmole g−1 h−1 at 2 h after feeding, to a basal rate of 0.50 μmole g−1 h−1 at 24–36 h since the last meal. Conversely, host sea anemones Entacmaea quadricolor absorbed ammonia at a rate of 0.10 μmole g−1 h−1 during the daytime in ammonia-enriched seawater, but during the night reduced their absorption rate to near zero, indicating that ammonia uptake was driven by zooxanthella photosynthesis. When incubated together, net ammonia excretion was virturally zero, indicating that host anemones absorbed most of the ammonia produced by resident fish. Adult anemonefish weighed about 11 g under laboratory conditions, but on the coral reef may reach up to 64 g, resulting in a maximal potential ammonia load of >200 μmole h−1 produced by two adult fish during daylight hours. In contrast, host sea anemones weighed about 47 g in the laboratory, but under field conditions, large individuals may reach 680 g, so their maximal ammonia clearance rates may reach about 70 μmole h−1 during the daytime. As such, the ammonia load produced by adult anemonefish far exceeds the clearance rate of host anemones and zooxanthellae. Ammonia transfer likely occurs mainly during the daytime, when anemonefish consume zooplankton and excrete rapidly, and in turn the zooxanthellae are photosynthetically active and drive rapid ammonia uptake. We conclude that zooplanktivorous fishes that form mutualisms with coral reef cnidarians may serve as an important link between open water and benthic ecosystems, through the transfer of large quantities of nutrients to zooxanthellate hosts, thus enhancing coral reef productivity.  相似文献   

15.
The soft coral Heteroxenia fuscescens (Ehrb.) and its isolated zooxanthellae (endosymbiotic dinoflagellates) were investigated with particular regard to uptake and utilization of exogenously supplied 14C-acetate in the light and in the dark. The incorporation of 14C from 14C-acetate into the host tissue and into the zooxanthellae was consistently much higher in the light than in the dark. The incorporated 14C-acetate was rapidly metabolized by the host and algae and was recovered from different assimilate fractions. The major proportion of radiocarbon from metabolized 14C-acetate was located in host tissue. The CHCl3-soluble fraction composed of diverse lipids showed the strongest 14C-labelling. Zooxanthellae isolated prior to incubation accounted for about 80% of the acetate incorporation recorded for zooxanthellae in situ (in vivo). It is concluded from a comparison of acetate incorporation and conversion under light and dark conditions that most of the lipid reserve of the host tissue originates from fatty acids, which are synthesized within the algal symbionts and are then translocated to the heterotrophic partner via extrusion. The acetate units needed for lipid synthesis are obtained by absorption of free acetate from dissolved organic matter (DOM) in the seawater as well as by photosynthetic assimilation of inorganic carbon. Thus, in H. fuscescens, lipogenesis is operated as a light-driven process to which the zooxanthellae considerably contribute assimilatory power by performing fatty acid synthesis and translocation of lipid compounds to their intracellular environment (host cell). A metabolic scheme is proposed to account for the different pathways of carbon conversion observed in H. fuscescens. The incubations took place in August 1980 and the analytical part from October 1980 to January 1984.  相似文献   

16.
The nutritional history of corals is known to affect metabolic processes such as inorganic nutrient uptake and photosynthesis, but little is known about how it affects assimilation efficiency of ingested prey items or the partitioning of prey nitrogen between the host and symbiont. The temperate scleractinian coral Oculina arbuscula and its tropical congener Oculina diffusa were acclimated to three nutritional regimes (fed twice weekly, starved, starved with an inorganic nutrient supplement), then fed Artemia nauplii labeled with the stable isotope tracer 15N. Fed corals of both species had the lowest assimilation efficiencies (36–51% for O. arbuscula, 38–57% for O. diffusa), but were not statistically different from the other nutritional regimes. Fed and starved corals also had similar NH4+ excretion rates. This is inconsistent with decreased nitrogen excretion and reduced amino acid catabolism predicted by both the nitrogen recycling and conservation paradigms. In coral host tissue, ~90% of the ingested 15N was in the TCA-insoluble (protein and nucleic acids) and ethanol-soluble (amino acids/low molecular weight compounds) within 4 h of feeding. The TCA-insoluble pool was also the dominant repository of the label in zooxanthellae of both species (40–53% in O. arbuscula, 50–60% in O. diffusa). However, nutritional history had no effect on the distribution of prey 15N within the biochemical pools of the host or the zooxanthellae for either species. This result is consistent with the nitrogen conservation hypothesis, as preferential carbon metabolism would minimize the effects of starvation on nitrogen-containing biochemical pools.Communicated by P.W. Sammarco, Chauvin  相似文献   

17.
Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between symbiont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.  相似文献   

18.
Corals in an in situ respirometer exposed to suspended peat during the day greatly decreased net oxygen production, probably due to a reduction of intensity and spectral quality of light reaching the symbiotic zooxanthellae. Net production returned to pre-exposure levels after the chambers were cleared; the corals showed no behavioral effects. In contrast, after exposure during the night, corals displayed clearing behavior (such as extreme distension of the coenosarc and trapping of peat particles in thick clumps of mucus) and an increase in respiration rate comparable to the decrease in net production observed during the daytime exposure. The following morning, net production values were significantly lower than pre-exposure production values although ambient light intensity was slightly higher. This decrease in production as well as a 22% reduction of chlorophyll content in the coral tissue indicated loss of zooxanthellae from the stressed corals. Long-term exposure to such a stress could reduce coral growth rates and substantially alter coral reef communities.  相似文献   

19.
W. Admiraal 《Marine Biology》1977,41(4):307-315
A carbon-14 assimilation method was used to determine action spectra and photosynthesis versus irradiance (P versus I) curves of natural populations of phytoplankton and zooxanthellae from a coral reef fringing Lizard Island in the Australian Barrier Reef. The action spectra were related to the phytoplankton species composition. The curves showed shade adaptation in phytoplankton from deeper waters and in the zooxanthellae. Rates of photosynthesis of zooxanthellae were shown to be highly but variably dependent on their host organisms. Photosynthetic production by zooxanthellae was about 0.9 gC m-2 day-1, which is about three times higher than phytoplankton production in the waters close to the reef.  相似文献   

20.
M. S. Hill 《Marine Biology》1996,125(4):649-654
Several species of boring sponges harbor symbiotic zooxanthellae, and it is believed that the symbiont enhances boring activity of host sponges. This hypothesis was tested using manipulative field experiments to assess the effect of intracellular zooxanthella populations on boring rates of the tropical sponge Anthosigmella varians forma varians. Portions of sponge were attached to 60 calcium carbonate blocks of known weight. Three sets of 10 blocks were grown at high light levels and three sets of 10 blocks were grown at low light levels for 105 d in the Florida Keys, Florida, USA. Boring rates, growth rates (lateral growth and within-substratum tissue penetration), and zooxanthella populations were measured at the end of the experiment. Absolute rates of boring and growth of A. varians forma varians were significantly greater when zooxanthella densities were higher. Boring rate and tissue penetration related to final surface area of sponge attachment was also enhanced when zooxanthella densities were higher, suggesting that the symbiont plays a physiological role in the decalcification process. This is in contrast to the role that zooxanthellae play in coral hosts. Based on the results of this study, it appears that the presence of zooxanthellar symbionts has important ecological and life-history consequences for host sponges. Ability to laterally overgrow competitors will be correlated with the size and activity of zooxanthella populations. In addition, the fitness of host sponges will be enhanced by algal symbionts, since greater penetration within substrata will result in an increase in production of tissue that can be converted into storage, feeding and reproductive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号