首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant‐soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K‐free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate‐bound, organic‐bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe‐Mn oxides‐bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate‐bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe‐Mn oxides‐bound and organic‐bound Mn in soil.  相似文献   

2.
添加天然沸石和石灰对土壤镉形态转化的影响   总被引:12,自引:0,他引:12  
采用土壤培养实验,研究镉污染土壤中添加沸石、石灰及两者配施对土壤pH值和土壤镉形态变化的影响。结果表明,土壤pH值随沸石用量的增加而增加,随培养时间呈现先增加后下降并逐渐趋于稳定的趋势,但均高于对照。高剂量石灰的处理对土壤pH的影响最大,与对照相比土壤pH提高了3.33个单位。在土壤5~50 d培养过程中,石灰处理的土壤交换态镉含量呈现先逐渐降低而后略有升高的趋势,其余处理均呈下降趋势。培养50 d后,高剂量的沸石、石灰及高剂量沸石与石灰配施处理的土壤交换态镉含量从5 d时的67.54、61.95和55.56 mg/kg降低至54.65、49.93和45.96mg/kg。相关分析表明,不同培养时期交换态镉含量与土壤pH值呈负相关关系。在10个处理中,L2Z3(石灰2 g/kg土和沸石60 g/kg土)组合处理效果最好,使土壤交换态镉含量下降了34.68%,碳酸盐结合态镉含量上升了4.30%,铁锰氧化结合态镉含量上升了16.97%,有机结合态镉含量上升了1.31%,残渣态镉含量上升了12.11%。  相似文献   

3.
Amending soils with compost may lead to accumulation of metals and their fractions at various concentrations in the soil profile. The objectives of this study were to determine 1) the accumulation of Cu, Fe, Mn, and Zn with depth and 2) the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each metal in soils amended with MSW compost, co-compost, biosolids compost and inorganic fertilizer (as control). Total concentrations of Cu, Fe, Mn and Zn were concentrated in the 0-22 cm soil layer and scant in the rock layer. These metals were in the decreasing order of Fe > Mn > Zn > or = Cu. Copper, Fe, and Zn were predominantly in the residual form followed by fractions associated with Fe-Mn oxides, carbonate, organic, exchangeable and water soluble in all treatments except MSW compost amended soil where the organic fraction was higher than the carbonate fraction. In fertilizer, co-compost and biosolids compost treated soils Mn concentrated mainly in the Fe-Mn oxides form followed by residual, carbonate, and organic forms whereas, in MSW compost treated soil the same pattern occurred except that Mn organic fraction was higher than that in the carbonate form. The MSW compost has a greater potential to be used as a soil amendment to supply plants with Cu, Mn and Zn than other treatments in calcareous soils of south Florida.  相似文献   

4.
Organic wastes have been reported to reduce saturation of the exchange complex by Al in Al-rich acid soils. For 3 years, the main soil fertility properties were studied in plots sown with mixed pasture species. These plots were fertilized with cattle slurry, dairy sludge (DS), or granulated broiler litter (BL) in comparison with mineral fertilizer. Al saturation levels were low after the initial inorganic liming treatment (19.00-33.71%) but tended to rise under all treatments (21.09-61.37%) except BL (8.45-30.98%), which was also associated with the highest average soil pH and the highest average levels of exchangeable Ca2+, Mg2+, and K+. Treatment DS performed similarly to mineral fertilizer in most respects, but it led to greater available P levels. Under the dry conditions of the second and third years of the study, BL and DS treatments were associated with significantly greater forage yields than the other treatments. Under DS treatment, available P levels were too low to allow the maintenance of mixed pasture, clover being eliminated by the less P-dependent species.  相似文献   

5.
Disposal of untreated olive mill waste waters (OMW) is a serious environmental problem in many Mediterranean countries. The aim of this work was to assess whether changes in soil properties have occurred due to direct disposal of raw OMW on soil and in evaporation ponds, and to investigate the potential fate and transport of pollutants after olive oil production had ceased. The results clearly showed that uncontrolled OMW disposal is a significant source of pollution to surface soil and waters. Disposal of OMW on soil greatly increased electrical conductivity (EC), available phosphorous (P), exchangeable potassium (K) and magnesium (Mg), organic matter, polyphenols, total and inorganic nitrogen (N), and available micronutrients mainly in surface soil layers. The presence of a high content of clay and carbonates in soil act as barriers and prevent downward transport of pollutants. Residual levels of total carbon (C), polyphenols, total and inorganic N, exchangeable K+, available P, iron (Fe), and copper (Cu) were also elevated even 8 years after mill closure. The long term disposal of OMW highlights the need to establish soil quality standards for soil parameters in order to identify soils affected by the disposal of OMW.  相似文献   

6.
Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m3 ha−1 year−1) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH.  相似文献   

7.
Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H+ and Al3+ and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg?1soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H+ and Al3+. Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.  相似文献   

8.
Naturally weathered and unweathered samples of fly ashes produced from Gondwana and lignite coals were characterized for their edaphological properties. The particle size distribution in these fly ashes varied widely, and the percentage of [Formula: see text] size particles governed their water holding capacity. All fly ashes were noncoherent in the dry state and had lower particle density than quartz and mulite. The fly ashes were low in available N, but were sufficient in available P, K, Ca, Mg, S, Cu, Fe, Mn, Zn and B. Among the fly ashes, unweathered lignite fly ash was the richest source of K, Ca, Mg, S and Fe, while weathered lignite fly ash had the highest amounts of Mn, Zn and B. The pH of the fly ashes was closely related to the ratio of exchangeable Ca to exchangeable Al. The fly ashes were high in soluble salt, but were poor in cation exchange capacity. As an amendment to correct soil pH, the fly ashes had a poor buffering capacity. Weathering decreased the total Fe, available S and exchangeable Na percentages, but increased the organic C content of the fly ashes. Invariably, an excess of soluble salts and exchangeable Na could limit plant growth on fly ash dumps. Toxic levels of B and Al existed in only some fly ashes.  相似文献   

9.
A greenhouse study was conducted to evaluate the potential use of olive-cake ash as a soil amendment, using pepper (Capsicum annuum, L. cv Italian sweet). Three soils of different pH (acidic, neutral and calcareous) were used. Treatments included a control (no fertilizer application), NPK fertilizer, and two ash-application rates that provided a complete dose (equivalent to the K2O amount in the fertilizer) and a half dose (equivalent to half the K2O amount in the fertilizer), respectively. The ash was effective in raising soil pH. Ash treatments increased the pepper (stems and leaves) dry matter yield over control; although these increases were lower than treatment including NPK. Application of ash significantly increased leaf P concentration and AB-DTPA extractable P in soil, especially in the acidic and neutral soils. Leaf K concentrations and readily and slowly available K forms in soils were affected positively by the addition of the ash. These results demonstrate that ash from the combustion of wet olive cake can be used as a beneficial organic soil amendment.  相似文献   

10.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

11.
Background, Aim and Scope Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal- fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Materials and Methods: Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October, 2000 to July, 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO42-, NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Results: Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO42- added accumulated in the soil. Discussion: Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of the leaf K, Ca and Mg concentrations when the treatment acidity increased. Conclusions: Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Recommendations and Perspectives: Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.  相似文献   

12.
Cao X  Chen Y  Wang X  Deng X 《Chemosphere》2001,44(4):655-661
Equilibrium release experiments were conducted under three different pH values of 3.5, 5.5 and 7.5 as well as three redox potentials of 400, 0 and -100 Mv to investigate the influence of redox potential and pH value on the La, Ce, Gd and Y release of from the simulated-REEs-accumulation (SRA) soil. Oxygen and nitrogen were allowed to flow into soil suspension to adjust redox potential to a preset value, and 1 mol/l HCl or 1 mol/l NaOH solutions were added into the soil suspension to keep pH at a preset value. Results indicated that La, Ce, Gd and Y release increased gradually with the decrease of pH value or Eh, and the influence of redox potential on Ce was more remarkable than on La, Gd and Y. At the same time. It was observed that La, Ce, Gd and Y releases were positively correlated with the release of Fe and Mn, indicating that La, Ce, Gd and Y releases might originate from dissolution of Fe-Mn oxyhydroxides under reduction and low pH conditions. Moreover, it was found that alteration of pH value and redox potential might affect the change of La, Ce, Gd and Y species in the soil. The contents of La, Ce, Gd and Y in exchangeable fraction and Fe-Mn oxide fraction in the solid phase from soil suspension separation decreased with the decline of pH value and redox potential. Multiple stepwise regression analysis showed that exchangeable fraction and Fe-Mn oxide fraction predominately contributed to the La, Ce, Gd and Y release. Low pH value and redox potential were more favorable to La, Ce, Gd and Y releases following the change of their species. The La, Ce, Gd and Y contents in exchangeable fraction and Fe-Mn oxide fraction are the main contributors to their release.  相似文献   

13.
While phytoextraction tools are increasingly applied to remediation of contaminated soils, strategies are needed to optimize plant uptake by improving soil conditions. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. Microcosm experiments were conducted in greenhouse to examine the effect of different phosphorus (P) sources on zinc (Zn) phytoextraction by Sedum alfredii in aged Zn-contaminated paddy soil. The Zn accumulation, soil pH, microbial biomass and enzyme activity, available Zn changes. and Zn phytoremediation efficiency in soil after plant harvest were determined. Upon addition of P, Zn uptake of S. alfredii significantly increased. Mehlich-3 extractable or the fractions of exchangeable and carbonate-bound soil Zn were significantly increased at higher P applications. Soil pH significantly decreased with increasing P application rates. Soil microbial biomass in the P-treated soils was significantly higher (P?<?0.05) than those in the control. Shoot Zn concentration was positively correlated with Mehlich-3 extractable P (P?<?0.0001) or exchangeable/carbonate-bound Zn (P?<?0.001), but negatively related to soil pH (P?<?0.0001). These results indicate that application of P fertilizers has the potential to enhance Zn mobility and uptake by hyperaccumulating plant S. alfredii, thus increasing phytoremediation efficiency of Zn-contaminated soils.  相似文献   

14.
Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0-22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P > Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0-22 cm soil depths except for Cd in the 10-22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe-Mn oxides form in the 0-10 and 10-22 cm soil layers. Cadmium was predominantly in the Fe-Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0-10 cm soil layer.  相似文献   

15.

A greenhouse study was conducted to evaluate the potential use of olive-cake ash as a soil amendment, using pepper (Capsicum annuum, L. cv Italian sweet). Three soils of different pH (acidic, neutral and calcareous) were used. Treatments included a control (no fertilizer application), NPK fertilizer, and two ash-application rates that provided a complete dose (equivalent to the K2O amount in the fertilizer) and a half dose (equivalent to half the K2O amount in the fertilizer), respectively. The ash was effective in raising soil pH. Ash treatments increased the pepper (stems and leaves) dry matter yield over control; although these increases were lower than treatment including NPK. Application of ash significantly increased leaf P concentration and AB-DTPA extractable P in soil, especially in the acidic and neutral soils. Leaf K concentrations and readily and slowly available K forms in soils were affected positively by the addition of the ash. These results demonstrate that ash from the combustion of wet olive cake can be used as a beneficial organic soil amendment.  相似文献   

16.
The elemental uptake and distribution, in various parts of the admired herbal plant, Hypoxis hemerocallidea, the 'African potato' and its ability to accumulate elements in response to the growth soil quality are investigated. The total and exchangeable concentrations of twelve elements in the growth soils and their distribution in the roots, potato bulb and leaves of the plants grown under four different settings were compared. The typical concentrations of the twelve selected elements, in the bulb and leaves of the plant grown in a nursery pot (site 2) were (in microg g(-1)dry weight) Ca (8430 and 27075), Mg (2113 and 1566), Fe (66 and 150), Al (10 and 368), Zn (105 and 6.1), Mn (42 and 51), Cu (7.2 and 20.8), Ba (0.23 and 4.44), Co (0.20 and 0.42), As (2.05 and 24.56), Hg (0.92 and 1.82) and Cr (0.13 and 0.33). Except for Ca, Mg, Zn and Mn, the exchangeable cation concentrations in all the growth soils were low. Ca, Mg, Mn, Zn and As had bioaccumulation factors >1. Fe, Al and Co concentrations were high in the roots with little in the rest of the plant. High concentration of arsenic (approximately 13 microg g(-1) dry weight) with bioaccumulation factors of 7 and 20 were observed in the roots and leaves of the plant respectively (site 2), but the concentration of mercury in bulb was very low (0.92 microg g(-1) dry weight).  相似文献   

17.
Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer + rapeseed residue (N70 + R), 30% mineral N fertilizer + rapeseed residue (N30 + R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70 + R and N30 + R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.  相似文献   

18.
Metal accumulation in poplar plant grown with industrial wastes   总被引:6,自引:0,他引:6  
In this study the effects of different levels of industrial wastes on growth traits and metal accumulation in aerial portions were determined for Populusxeuramericana clone I-214. The experiment started in April 2003. Scions of Populusxeuramericana clone I-214, were grown outdoor near Pisa (Italy), in lisimeters filled with soil naturally present in the land around the experimental site, were daily drip irrigated, hand weeded, monthly fertilized, pruned for a unique shoot and cultivated with four increasing treatments: soil non-amended, soil amended with 4.8 kgm(-2), with 9.6 kgm(-2) and with 19.2 kgm(-2) of fresh tannery waste. The climatic parameters were daily recorded throughout the whole experiment. Growth relieves were performed during the growing season. After six months since the plantation of the scions, aerial portions of every plant were harvested for biomass and metal content analyses. Data demonstrated that the waste exerted beneficial effects on poplars mainly through a general increase of growth traits and that the nutrients relocation is the mechanisms involved in modulating growth rate. The concentration and the amount of the mineral elements analysed (N, P, K, Na, Ca, Mg, S, B, Fe, Mn, Cu, Zn, Cr) changed determinately among treatments, organs and position. We concluded that phytoremediation strategies of tannery wastes might be possible and sustainable for polar plantations in soil amended with non-hazardous levels of industrial waste, which maintain total heavy metals concentration close to background values.  相似文献   

19.

Loessal soil is one of the main cultivated soils in northwest China. Part of its distribution area was irrigated with industrial wastewater in past three decades. This caused heavy metal contamination in the soil. It had induced toxicity on crops and also threatened local human health for now. Based on a field plot experiment, effects of different Cu concentrations (from 45 to 2000 mg kg?1) in loessal soil on spinach plant growth and uptake of mineral nutrients (Zn, Fe, Mg, K, and Ca) by spinach were investigated. The Cu addition increased available concentrations of mineral nutrients in loessal soil and concentrations of Cu, Zn, Mg, and Ca in roots. The translocation of mineral nutrients from roots to leaves was inhibited under Cu addition, inducing their decrease in leaves. The EC10 and EC50 of soil Cu in relative dry weights of leaves were 240.33 mg kg?1 and 1205.04 mg kg?1, respectively. The PLS-PM analysis showed that available concentrations of nutrients in soil were only affected by Cu in soil positively, nutrients in roots were mainly affected by Cu in soil and Cu in leaves positively, nutrients in leaves were mainly affected by Cu in roots negatively, translocation of nutrients in spinach and plant growth were principally affected by Cu in leaves negatively, and the total effect of Cu in leaves on nutrients in roots and leaves, translocation of nutrients in spinach, and plant growth was the highest. Our results indicated that the phytotoxicity of Cu including spinach growth inhibition and mineral disorder in spinach was mainly affected by the Cu concentrations in leaves.

  相似文献   

20.
The pH of south Swedish soils have decreased considerably during the last 15–35 years. The decrease has occurred throughout the soil profile, not only in the rhizosphere, and is particularly marked in the originally less acid soils. The pH decrease was accompanied by considerable losses of exchangeable Na, K, Mg and Ca, as well as of Zn and (in the originally less acid soils) of Mn. The changes can be prognosticated from the current relationship between soil pH and base saturation and from budget calculations based on lysimeter data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号