首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Samples of a mineral soil (Plainfield sand) and an organic soil (muck) were treated with granular and EC formulations of chlorpyrifos and incubated at 27±1°C and 65±5% RH in open and closed containers. Duplicate samples of each soil‐formulation‐container combination were analyzed for residual chlorpyrifos during a 23 wk period. The disappearance rates observed demonstrate that the relative importance of formulation and containment on overall persistence depends on soil type. For the mineral soil, disappearance was slower from closed containers and formulation had only a slight effect while, in the organic soil the granular formulation disappeared slower than the EC and there was little difference between open and closed containers. The relative importance of degradation and volatilization in the disappearance of chlorpyrifos from soil is discussed.  相似文献   

2.
Abstract

Lorsban 15G (15% chlorpyrifos) at 1.6 and 2.2 g a.i./10 m row, and Lorsban 4E (40.7% chlorpyrifos) at 2.0 g a.i./10 m row were applied respectively to a silt loam soil as a band treatment at seeding and as a drench after seeding. The rate of disappearance of chlorpyrifos [Q,Q‐diethyl Q‐(3,5,6‐trichloro‐2‐pyridinyl) phosphorothioate] was relatively fast in the first 15 days but slowed down considerably thereafter regardless of the methods of application and application rates; and there was a statistically significant (p=0.05) linear relationship between the natural logarithm of chlopyrifos concentration and time. Based on the linear regression equations, the calculated pseudo‐first‐order rate constants were 0.041 day‐1 and 0.044 day‐1 respectively for the band treatments at 1.6 and 2.2 g a.i./10 m row; and 0.040 day‐1 for the drench. The calculated half‐lives for all three treatments were similar and they ranged frcm 15.8 days to 17.3 days. The degradation product 3,5,6‐trichloro‐2‐pyridinol (TP) was detected in soil but not 3,5/6‐trichloro‐2‐methoxypyridine (TMP). The concentration of TP increased steadily to a peak and declined thereafter. The highest mean concentration of TP was 2.21 ppm (dry wt) detected 29 days after band treatment at the high rate. After 90 days the concentration of TP decreased to 0.43 ppm (dry wt).  相似文献   

3.
Abstract

Fenvalerate EC at 140 g AI/ha was applied 7 times at 2 wk intervals to duplicate plots of Plainfield sand and an organic soil contained in 2.2 x 0.9 m field microplots with and without an onion crop present in 1980 and 1981 respectively. Soil samples were taken immediately before and after each application and at 2, 4, and 6 wk after the last application in 1980. Additional samples were taken at 22 and 34 wk for the 1981 treatment. Concentrations of fenvalerate were determined by glc. In the crop‐free mineral soil, fenvalerate levels declined from. 0.07–0.11 ppm immediately after spraying to 0.01–0.03 ppm after 2 wk; in the organic soil the rate of addition of fenvalerate exceeded the rate of disappearance and the concentration in the soil gradually increased over the 14 wk treatment period to the 0.9–1.0 ppm range. This concentration decreased slowly over the next 10 wk to 0.7–0.8 ppm and was still 0.5–0.7 ppm the following spring. Results were similar for cropped soils. Concentrations in the top third of the 15 cm cores were 6x and 15x those in the middle third for sand and organic soil, respectively. Concentrations, in the onions at harvest were <0.01 ppm.  相似文献   

4.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha(- 1). Terbuthylazine was applied to both plots at a rate of 2 kg ha(- 1) a.i. Triplicates from each plot were sampled at 3 depths (0-10, 10-20 and 20-30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

5.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha? 1. Terbuthylazine was applied to both plots at a rate of 2 kg ha? 1 a.i. Triplicates from each plot were sampled at 3 depths (0–10, 10–20 and 20–30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

6.
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g?1, or moderate, ca. 20 μg g?1) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.  相似文献   

7.
Corn is intensively cultivated in western Hungary in the basin of Lake Balaton, one of the most important water resources in eastern Europe. Pesticide runoff was measured in 1996 and 1997 from a typical corn field near Zalaegerszeg, Hungary, which drains into the Zala River, an important water source of Lake Balaton. Three herbicides, namely atrazine, acetochlor, and propizochlor, and the insecticide chlorpyrifos were applied to bare soil in a field with 5% slope and soil and runoff water pesticide concentrations were monitored. In 1997, a rainfall-runoff simulation experiment was conducted on a small sub-plot in order to measure pesticide runoff under reasonable worst-case conditions. Under natural rainfall almost all losses occurred in a large runoff event in 1996 one month after application in which 3% of atrazine and 1% of acetochlor was transported off the field. Propizochlor and chlorpyrifos losses in the same event were much lower: 0.2% and <0.01%, respectively, because of these chemicals' shorter persistence times in near-surface soil. The rainfall simulation produced only trace amounts of losses even though 4.1 cm was applied in 2 hours; the soil was extremely dry and only 0.2 cm runoff occurred containing less than 0.01% of all chemicals applied. The results suggest that intensive use of corn herbicides, which have been found to result in widespread contamination of water resources elsewhere, may be expected to have the same impact in the Balaton watershed depending on the amounts and intensities used in the basin.  相似文献   

8.
毒死蜱在不同土壤腐殖酸上的吸附/解吸特征   总被引:2,自引:0,他引:2  
通过平衡振荡法研究毒死蜱在不同来源土壤腐殖酸(Has)上的吸附/解吸行为.结果表明,毒死蜱在Has上的等温吸附行为用Freundlich模型描述相对更合理;它们的吸附等温线在实验范围内基本呈直线,且吸附能力很强,顺序为:紫色潮土Has>黄壤Has>中性紫色土Has>酸性紫色土Has>腐殖土Has;但毒死蜱的解吸率较小,其值均小于26.70%,有明显的滞后现象,尤其是腐殖土Has和紫色潮土Has,固定能力顺序为:紫色潮土Has>腐殖土Has>中性紫色土Has>酸性紫色土Has>黄壤Has.由于不同来源土壤中Has的组成结构差异明显,它们对毒死蜱的吸附/解吸规律表现出不同的特征.土壤Has对毒死蜱的吸附/解吸行为的影响是多种因素综合作用的结果,具体作用机理尚待进一步研究.  相似文献   

9.
In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.  相似文献   

10.
Movement and persistence of chlorbromuron applied at rates of 1.5, 3, and 6 kg a.i./ha was studied in a New Brunswick potato soil for one growing season. Most of the chlorbromuron remained in the 0 - 2.5 cm soil depth with slight residues in the 2.5 - 5, 5 - 7.5, and 7.5 - 10 cm depths. After 47 days the chlorbromuron residues had dropped to 40%, then gradually levelled off to 25% at the end of the season. Chlorbromuron was determined directly by electron capture gas chromatography using a short glass column of 3% OV-210.  相似文献   

11.
Abstract

Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4 ‐ methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

12.
Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4-methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

13.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

14.

The insecticide 14C-chlorpyrifos was found mineralized in a Tunisian soil with repeated exposure to it. From this soil, a bacterial strain was isolated that was able to grow in a minimal salt medium (MSM) supplemented with 25 mg L?1 of chlorpyrifos. It was characterized as Serratia rubidaea strain ABS 10 using morphological and biochemical analyses, as well as 16S rRNA sequencing. In a liquid culture, the S. rubidaea strain ABS 10 was able to dissipate chlorpyrifos almost entirely within 48 h of incubation. Although the S. rubidaea strain ABS 10 was able to grow in an MSM supplemented with chlorpyrifos and dissipate it in a liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, it can be concluded that the dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. It can also be ascribed to other reasons such as the formation of biogenic non-extractable residues. In both non-sterile and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in controls with DT50 of 1.38 and 1.05 days, respectively.

  相似文献   

15.
Abstract

Fluazinam, a widely used pesticide in conventional potato cultivation, is effective against epidemics of the fungal disease late blight. To assess fluazinam persistence in soil, laboratory experiments were conducted with fluazinam added to soil as a pure chemical or contained in the commercial product Shirlan®. In a follow-up experiment, the persistence was monitored under constant temperature and water content conditions during a maximum period of 1?year. In an annual climatic rotation experiment, fluazinam added to soil was exposed to the year-round temperature and water content conditions occurring in the boreal zone. A third experiment was undertaken to clarify the effect of soil organic matter (SOM) on the recovery of fluazinam. In the follow-up and annual climatic rotation experiments, more than half of the added fluazinam was recovered after 1?year of incubation. The estimated half-life of fluazinam ranged between 355 and 833?days. The degradation of fluazinam was enhanced by an abundance of SOM, a warm temperature, and wetness. Additionally, in over half of soil samples collected from fields where potato had been intensively cultivated for many years, varying concentrations of fluazinam were detected. Fluazinam can carry over to the next growing season in professional potato production.  相似文献   

16.
Two typical neutral soils were treated with 10, 200 and 2000 ppm 4-chloro-o-cresol and 5-chloro-3-methylcatechol under field capacity condition, and incubated for 12 weeks at room temperature. The samples were collected after 0, 2, 4, 8 and 12 weeks to study the fate of the compounds by gas chromatography. The two compounds were rapidly degraded and degradation was almost complete (90–96 %) after 4 weeks with a level of 10 ppm. The rate of persistence was similar in the two soils after different periods of incubation.  相似文献   

17.
The effects of 32 pesticides at two concentrations on acetylene reduction (non-symbiotic nitrogen fixation), nitrogen fixers, bacteria and fungi in an organic soil were assessed. None of the pesticide treatments suppressed C2H2 reduction as compared to controls. No significant inhibition of the population of non-symbiotic nitrogen fixers occurred. However, stimulatory effects were observed with treatments of fensulfothion, fonofos, oxamyl, DDR, TeloneR and Telone CR. Bacterial and fungal populations showed temporary declines but all recovered within 7 days to levels similar to or higher than those in the controls.  相似文献   

18.
The persistence and dissipation kinetics of trifloxystrobin and tebuconazole on onion were studied after application of their combination formulation at a standard and double dose of 75 + 150 and 150 + 300 g a.i. ha?1. The fungicides were extracted with acetone, cleaned-up using activated charcoal (trifloxystrobin) and neutral alumina (tebuconazole). Analysis was carried out by gas chromatograph (GC) and confirmed by gas chromatograph mass spectrometry (GC-MS). The recovery was above 80% and limit of quantification (LOQ) 0.05 mg kg?1 for both fungicides. Initial residue deposits of trifloxystrobin were 0.68 and 1.01 mg kg?1 and tebuconazole 0.673 and 1.95 mg kg?1 from standard and double dose treatments, respectively. Dissipation of the fungicides followed first-order kinetics and the half life of degradation was 6–6.6 days. Matured onion bulb (and field soil) harvested after 30 days was free from fungicide residues. These findings suggest recommended safe pre-harvest interval (PHI) of 14 and 25 days for spring onion consumption after treatment of Nativo 75 WG at the standard and double doses, respectively. Matured onion bulbs at harvest were free from fungicide residues.  相似文献   

19.
The sorption of phenanthrene (PHN) to relatively pure soil humic acids (HAs) was investigated to assess the suitability of the soil HA as a surrogate sorbent for the soil organic matter (SOM). The HAs were prepared in both freeze-dried and air-dried forms. The two forms of HAs from the same source are similar in composition but the freeze-dried HAs exhibit a significantly higher initial surface area (SA) (3.86-4.59 m(2)/g); the SAs of air-dried HAs are below 0.1 m(2)/g. However, the SAs of freeze-dried HAs are not stable upon contact with water; the samples lose practically all the SA after 4 days of immersion in water. The PHN sorption to both forms of HAs is practically linear, whether a co-solute is present or not. The sorption linearity observed with the present freeze-dried HAs is in sharp contrast with the allegedly nonlinear PHN sorption on similar freeze-dried HAs as presented by others.  相似文献   

20.
BACKGROUND: A climate-controlled pot experiment was conducted to investigate the effects of planting alfalfa and applying organic fertilizer on the dissipation of benzo[a]pyrene from an aged contaminated agricultural soil. RESULTS: Short-term planting of alfalfa inhibited the dissipation of benzo[a]pyrene from the soil by 8.9%, and organic fertilizer enhanced benzo[a]pyrene removal from the soil by 11.6% compared with the unplanted and unfertilized treatments, respectively. No significant interaction was observed between alfalfa and organic fertilizer on benzo[a]pyrene dissipation. Sterilization completely inhibited the removal of benzo[a]pyrene from the soil indicating that its degradation by indigenous microorganisms may have been the main mechanism of dissipation. Furthermore, significant positive relationships were observed between benzo[a]pyrene removal and the contents of soil ammonium nitrogen, nitrate nitrogen, and total mineral nitrogen at the end of the experiment, suggesting that competition between plants and microorganisms for nitrogen may have inhibited benzo[a]pyrene dissipation in the rhizosphere of alfalfa and the addition of organic fertilizer may facilitate microbial degradation of benzo[a]pyrene in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号