共查询到20条相似文献,搜索用时 15 毫秒
1.
D. E. Barb J. F. Cruise X. Mo 《Journal of the American Water Resources Association》1996,32(3):511-519
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time. 相似文献
2.
Michael R. Burkart Philip W. Gassman Thomas B. Moorman Piyash Singh 《Journal of the American Water Resources Association》1999,35(5):1089-1100
Data from seven Management Systems Evaluation Areas (MSEA) were used to test the sensitivity of a leaching model, Pesticide Root Zone Model-2, to a variety of hydrologic settings in the Midwest. Atrazine leaching was simulated because it was prevalent in the MSEA studies and is frequently detected in the region's groundwater. Short-term simulations used site specific soil and chemical parameters. Generalized simulations used data avail. able from regional soil databases and standardized variables. Accurate short-term simulations were precluded by lack of antecedent atrazine concentrations in the soil profile and water, suggesting that simulations using data for less than five years underestimate atrazine leaching. The seven sites were ranked in order of atrazine detection frequency (concentration > 0.2 μg L-1) in soil water at 2 m depth in simulations. The rank order of the sites based on long-term simulations were similar to the ranks of sites based on atrazine detection frequency from groundwater monitoring. Simulations with Map Unit Use File (MUUF) soils data were more highly correlated with ranks of observed atrazine detection frequencies than were short-term simulations using site-specific soil data. Simulations using the MIJUIF data for soil parameters were sufficiently similarity to observed atrazine detection to allow the credible use of regional soils data for simulating leaching with PRZM-2 in a variety of Midwest soil and hydrologic conditions. This is encouraging for regional modeling efforts because soil parameters are among the most critical for operating PRZM-2 and many other leaching models. 相似文献
3.
Edward H. Smith Riyad J. Abumaizar Walter Skipwith 《Journal of the American Water Resources Association》2001,37(1):17-25
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented. 相似文献
4.
Joseph Domagalski 《Journal of the American Water Resources Association》1996,32(5):953-964
ABSTRACT: Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photo-degradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River. 相似文献
5.
John K Stamer Robert B. Swanson Paul R. Jordan 《Journal of the American Water Resources Association》1994,30(5):823-831
ABSTRACT: A synoptic sampling of five surface-water sites in central Nebraska was conducted by the U.S. Geological Survey as part of its National Water-Quality Assessment Program during storm runoff in May 1992 to relate transport, yields, and concentrations of atrazine to environmental setting. Atrazine was the most extensively applied pesticide in the study unit. Atrazine transport was related to the size of contributing drainage area, quantity of atrazine applied, amount of precipitation, and volume of stream-flow. Estimated yields and mean concentrations of atrazine were related to the percentage of cropland in a drainage area. The largest estimated yields and mean concentrations of atrazine in surface water were associated from drainage areas with the highest percentage of cropland, and the smallest was associated with the smallest amount of cropland. Atrazine concentrations increased as streamflow increased but decreased at or near the time of peak streamflows, perhaps due to dilution. Atrazine concentrations then increased and remained elevated far into the stream recession. Atrazine is a regulated contaminant in finished public-water supplies. Large concentrations of atrazine could affect the management of public-water supplies because atrazine remains in solution in contrast to many other pesticides that are more easily removed. 相似文献
6.
Raymond A. Ferrara Andrew Hildick-Smith 《Journal of the American Water Resources Association》1982,18(6):975-981
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed. 相似文献
7.
Lori A. Sprague 《Journal of the American Water Resources Association》2005,41(1):11-24
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought. 相似文献
8.
Scott A. Sheeder Jeremy D. Ross Toby N. Carlson 《Journal of the American Water Resources Association》2002,38(4):1027-1040
ABSTRACT: Many studies can be found in the literature pertaining to the effects of urbanization on surface runoff in small watersheds and the hydrologic response of undeveloped watersheds. However, an extensive literature review yielded few published studies that illustrate differing hydrologic responses from multiple source areas within a watershed. The concepts discussed here are not new, but the methods used provide a unique, basic procedure for investigating stormwater hydrology in topographically diverse basins. Six storm hydrographs from three small central Pennsylvania watersheds were analyzed for this paper; five are presented. Two important conclusions are deduced from this investigation. First, in all cases we found two distinct peaks in stream discharge, each representing different contributing areas to direct discharge with greatly differing curve numbers and lags representative of urban and rural source regions. Second, the direct discharge represents only a small fraction of the total drainage area with the urban peak becoming increasingly important with respect to the rural peak with the amount of urbanization and as the magnitude of the rain event decreases. 相似文献
9.
Wayne M. Wendland 《Journal of the American Water Resources Association》2001,37(3):685-693
ABSTRACT: Illinois data from 168 months (1986–1999) were investigated to determine the responses of surface‐water and ground‐water resources to precipitation. Such responses were generally within the month of occurrence or one to two months later, with recovery being reached another one to three months into the future, depending on season of the year. Although the drought of 1988 immediately impacted surface‐water and ground‐water resources, the time of recovery was substantially longer compared to those of individual dry months, generally continuing for several months. The extremely wet summer of 1993 resulted in elevated responses in water resources almost immediately, but in this instance continued through the following fall and winter, into the spring of 1994. 相似文献
10.
Baxter E. Vieux Fekadu G. Moreda 《Journal of the American Water Resources Association》2003,39(4):757-769
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border. 相似文献
11.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics. 相似文献
12.
William Whipple 《Journal of the American Water Resources Association》1991,27(6):895-902
ABSTRACT: Water quality controls of storm water runoff and infiltration should be a major part of a nonpoint source control program. Although surface runoff and ground water controls are often approached separately, coordination between the two is essential. For practical reasons, a rather simplified technology-based approach appears to be desirable. Areas affected vary greatly as to their sensitivity to pollution; and the various classes of pollutant source vary greatly as to their potential harmfulness. In effect, a matrix approach appears best, in which both vulnerability of the area and harmfulness of the pollutant source would have weight in determining which level of best management practices (BMP) would be appropriate, whether standard, special, or complete prohibition of the type facility under given circumstances. 相似文献
13.
Vassilios A. Tsihrintzis Rizwan Hamid 《Journal of the American Water Resources Association》1997,33(1):163-176
ABSTRACT: Runoff depth and pollutant loading (Biological Oxygen Demand [BOD5], Total Suspended Solids [TSS], Total Kjeldahl Nitrogen [TKN] and lead [Pb]) computations of urban stormwater runoff from four small sites (i.e., 14.7–58.3 ac) in South Florida were performed using the Soil Conservation Service (SCS) hydrology method and empirical equations developed by the U.S. Environmental Protection Agency (EPA). Each site had different predominant land uses (i.e., low density residential, high density residential, highway and commercial). Quantity and quality data from 95 storm events at these sites were measured by the U.S. Geological Survey (USGS), and used for calibration of the methodology to derive appropriate input parameters. Calibrated input parameters were developed for each land use to test the applicability of the methodology in small sub-tropical urban watersheds, and to provide hydrologists with a way to select appropriate parameter values for planning studies. A total of 16 independent rainfall events were used for verification of the methodology. Comparisons of predicted versus measured data for both hydrographs and pollutant loadings were performed. 相似文献
14.
Brian A. Joyce Wesley W. Wallender Till Angermann Barry W. Wilson Ingeborg Werner Michael N. Oliver Frank G. Zalom John D. Henderson 《Journal of the American Water Resources Association》2004,40(4):1063-1070
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments. 相似文献
15.
Bruce D. Lindsey William J. Gburek Gordon J. Folmar 《Journal of the American Water Resources Association》2001,37(5):1103-1117
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale. 相似文献
16.
L. Donald Duke Thomas S. Lo Michelle W Turner 《Journal of the American Water Resources Association》1999,35(4):821-836
ABSTRACT: This research evaluated concentration data for selected water quality parameters in selected California urban separate storm sewer systems during storm event discharges and during dry weather conditions. We used existing monitoring data from multiple regulatory agencies and municipalities originally collected for compliance or local characterization, which allowed systematic assessment of seasonal patterns over a wide region. Long term mean concentration for most parameters in most streams was higher during storm discharges than during dry weather flows to at least 95 percent confidence in 20 of 45 comparative evaluations, and lower statistical confidence in 22 other comparisons. Some regional differences emerged: in four evaluated streams in the San Francisco Bay Area, total concentration of lead, copper and zinc were lower during dry weather than during storm flows to at least 99.9 percent confidence, with only one exception; while the other four evaluated California streams showed the same tendency, but to much lower statistical confidence. 相似文献
17.
J. J. McDonnell Ian F Owens M. K. Stewart 《Journal of the American Water Resources Association》1991,27(4):679-685
ABSTRACT: Soil water potentials, slope throughflow, runoff chemistry, and isotopic composition were monitored in a 97 m2 zero-order basin within the Maimai 8 watershed on the South Island of New Zealand, for a natural rain storm and two artificial water applications. Contrary to results previously reported for other portions of the Maimai catchment, much of the runoff occurred as a shallow subsurface organic layer flow. For the 47 mm natural rain event, pre-storm soil matric potential ranged from ?60 to ?150 cm H2O. No saturation was produced within the profile, and the majority of storm runoff emanated from flow within the organic horizon perched on the mineral soil surface. Hillslope applications corroborated this interpretation by showing >90 percent new water flushing with negligible mineral soil moisture response. Although the mechanisms cited in the text are not representative of the entire catchment, the study demonstrates: (1) the value of a combined physical-chemical-isotopic approach in quantifying slope processes, and (2) the heterogeneous nature and diversity of slope runoff pathways in a relatively homogeneous catchment. 相似文献
18.
Michael Kwiatkowski Andrea L. Welker Robert G. Traver Megan Vanacore Tyler Ladd 《Journal of the American Water Resources Association》2007,43(5):1208-1222
Abstract: A pervious concrete infiltration basin was installed on the campus of Villanova University in August 2002. A study was undertaken to determine what contaminants, if any, were introduced to the soils underlying the site as a result of this best management practice (BMP). The average infiltration rate at the site is approximately 10?4 cm/s. The drainage area (5,208 m2) consists of grassy surfaces (36%), standard concrete/asphalt (30%), and roof surfaces (30%) that directly connect to the infiltration beds via downspouts and storm sewers. Composite samples of infiltrated stormwater were collected from the vadose zone using soil moisture suction devices. Discrete samples were collected from a port within an infiltration bed and a downspout from a roof surface. Samples from 17 storms were analyzed for pH, conductivity, and concentrations of suspended solids, dissolved solids, chloride, copper, and total nitrogen. Copper and chloride were the two constituents of concern at this site. Copper was introduced to the system from the roof, while chloride was introduced from deicing practices. Copper was not found in porewater beneath 0.3 m and the chloride was not significant enough to impact the ground water. This research indicates that with proper siting, an infiltration BMP will not adversely impact the ground water. 相似文献
19.
Andrea L. Welker James D. Barbis Patrick A. Jeffers 《Journal of the American Water Resources Association》2012,48(4):809-819
Welker, Andrea L., James D. Barbis, and Patrick A. Jeffers, 2012. A Side‐by‐Side Comparison of Pervious Concrete and Porous Asphalt. Journal of the American Water Resources Association (JAWRA) 48(4): 809‐819. DOI: 10.1111/j.1752‐1688.2012.00654.x Abstract: This article compares the performance of two permeable pavements, pervious concrete and porous asphalt, that were installed side‐by‐side in fall 2007. Because the pavements are located directly adjacent to one another, they experience the same vehicle loads, precipitation, and pollution loads. These permeable pavements are part of an infiltration stormwater control measure (SCM). This article focuses on the comparison of water quality parameters, maintenance and durability, and user perception. Eleven different water quality parameters were analyzed at this site for 19 different storm events over a one year period: pH, conductivity, total suspended solids, chlorides, total nitrogen, total phosphorus, total dissolved copper, total dissolved lead, total dissolved cadmium, total dissolved chromium, and total dissolved zinc. Results from the two pavement types were compared using the Mann–Whitney U‐test. The only parameter that was found to be statistically different between the two pavements was pH. Periodic inspection of the two pavement types indicated that after two years of use both pavements were wearing well. However, there was some evidence of clogging of both pavements and some evidence of surface wear. A survey of users of the lot indicated that the perception of these permeable pavements was favorable. 相似文献
20.
Dan Binkley George G. Ice Jason Kaye Christopher A. Williams 《Journal of the American Water Resources Association》2004,40(5):1277-1291
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies. 相似文献