首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: A general framework is proposed for using precipitation estimates from NEXRAD weather radars in raingage network design. NEXRAD precipitation products are used to represent space time rainfall fields, which can be sampled by hypothetical raingage networks. A stochastic model is used to simulate gage observations based on the areal average precipitation for radar grid cells. The stochastic model accounts for subgrid variability of precipitation within the cell and gage measurement errors. The approach is ideally suited to raingage network design in regions with strong climatic variations in rainfall where conventional methods are sometimes lacking. A case study example involving the estimation of areal average precipitation for catchments in the Catskill Mountains illustrates the approach. The case study shows how the simulation approach can be used to quantify the effects of gage density, basin size, spatial variation of precipitation, and gage measurement error, on network estimates of areal average precipitation. Although the quality of NEXRAD precipitation products imposes limitations on their use in network design, weather radars can provide valuable information for empirical assessment of rain‐gage network estimation errors. Still, the biggest challenge in quantifying estimation errors is understanding subgrid spatial variability. The results from the case study show that the spatial correlation of precipitation at subgrid scales (4 km and less) is difficult to quantify, especially for short sampling durations. Network estimation errors for hourly precipitation are extremely sensitive to the uncertainty in subgrid spatial variability, although for storm total accumulation, they are much less sensitive.  相似文献   

2.
ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.  相似文献   

3.
ABSTRACT: As part of a major project to provide the Rhine delta protection from North Sea floods, the Dutch installed sluices at Haringvliet in the late 1960s and converted the Haringvliet-Hollandsch Diep-Biesbosch (HHB) estuary into a tidally-damped, fresh-water system. Two decades later, the Dutch Rijkswaterstaat commissioned a study of alternative policies for managing the sluices and removing contaminated bottom sediments, including policies which would at least partially restore estuarine conditions to the HHB. This paper describes the public policy analysis comprising that study, focusing on the role played by formal mullicriteria evaluation (MCE), including the Analytic Hierarchy Process. Through the tasks of value-tree structuring, impact measurement, and criterion prioritization, the MCE influenced the entire structure of the analysis, became an integral part of it, and, despite initial skepticism among the participants about the utility of multicriteria analysis, was subsequently accepted and viewed favorably by the majority of them.  相似文献   

4.
ABSTRACT: The Floridan Aquifer is the primary source of water in the coastal area of Santa Rosa County, Florida. In order to optimize well field design and analyze aquifer stress problems, the USGS MODFLOW code (McDonald and Harbaugh, 1988) is applied to develop a numerical computer model of the aquifer. The Geographical Information System (GIS) is the primary tool used in the development of the model grid, performance of the modeling procedure, and model analysis. The GIS is used in generating multiple grids in which to simulate both regional scale and local scale flow. The grid topology is recorded in geographic coordinates which facilitates geo-referencing and orientation of the grid to base maps and data coyerages. The GIS allows data transfer from various coverages to the nodes of the block centered grid where hydrogeologic information is stored as attributes to the grid coverage. From this grid coverage, pertinent information is queried within the GIS environment and used to generate the input files for the MODFLOW simulation. After MODFLOW execution, simulated heads and drawdown are imported into the grid coverage where residual error and recharge rates can be calculated. Contoured surfaces are then created for selected data sets including simulated heads, drawdown, residual error, and recharge rates. Model calibration is conducted utilizing the GIS to generate and process data sets associated with model simulations.  相似文献   

5.
This paper presents ArcGIS‐SWAT, a geodata model and geographic information system (GIS) interface for the Soil and Water Assessment Tool (SWAT). The ArcGIS‐SWAT data model is a system of geodatabases that store SWAT geographic, numeric, and text input data and results in an organized fashion. Thus, it is proposed that a single and comprehensive geodatabase be used as the repository of a SWAT simulation. The ArcGIS‐SWAT interface uses programming objects that conform to the Component Object Model (COM) design standard, which facilitate the use of functionality of other Windows‐based applications within ArcGIS‐SWAT. In particular, the use of MS Excel and MATLAB functionality for data analysis and visualization of results is demonstrated. Likewise, it is proposed to conduct hydrologic model integration through the sharing of information with a not‐model‐specific hub data model where information common to different models can be stored and from which it can be retrieved. As an example, it is demonstrated how the Hydrologic Modeling System (HMS) ‐ a computer application for flood analysis ‐ can use information originally developed by ArcGIS‐SWAT for SWAT. The application of ArcGIS‐SWAT to the Seco Creek watershed in Texas is presented.  相似文献   

6.
ABSTRACT: Investigating natural, potential, and human-induced impacts on hydrologic systems commonly requires complex modeling with overlapping data requirements, plus massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrologic studies, the requisite software infrastructure must incorporate many components including simulation modeling and spatial analysis with a flexible, intuitive display. Integrating geographic information systems (GIS) and scientific visualization systems (SVS) provides such an infrastructure. This paper describes an integrated system consisting of an orographic precipitation model, a GIS, and an SVS. The results of this study provide a basis for improving the understanding of hydro-climatic processes in mountainous regions. An additional benefit of the integrated system, the value of which is often underestimated, is the improved ability to communicate model results, leading to a broader understanding of the model assumptions, sensitivities, and conclusions at a management level.  相似文献   

7.
ABSTRACT: The objective is to develop techniques to evaluate how changes in basic data networks can improve accuracy of water supply forecasts for mountainous areas. The approach used was to first quantify how additional data would improve our knowledge of winter precipitation, and second to estimate how this knowledge translates, quantitatively, into improvement in forecast accuracy. A software system called DATANET was developed to analyze each specific gage network alternative. This system sets up a fine mesh of grid points over the basin. The long-term winter mean precipitation at each grid point is estimated using a simple atmospheric model of the orographic precipitation process. The mean runoff at each grid point is computed from the long-term mean precipitation estimate. The basic runoff model is calibrated to produce the observed long-term runoff. The error analysis is accomplished by comparing the error in forecasts based on the best possible estimate of precipitation using all available data with the error in the forecasts based on the best possible estimate of winter precipitation using only the gaged data. Different data network configurations of gage sites can be compared in terms of forecast errors.  相似文献   

8.
ABSTRACT The Central Arizona Water Control Study (CAWCS) was initiated by the Bureau of Reclamation in 1978. The study attempted to identify and evaluate alternate water management schemes for Central Arizona. By 1981 a set of seven plans had been developed and for each an assessment on a number of economic, environmental, and social factors had been undertaken. This paper offers a formal procedure, using concordance analysis and multi-dimension scaling, to compare alternate plans using multiple factors in order to produce a classification of the attractiveness of the alternatives. Empirical data for the CAWCS are used to clarify the procedure. The results of the formal analysis are compared to those produced by the CAWCS. A critique of the formal procedure is offered, and it is suggested that it may have utility to assist in the collection of data as well as in the search for a best plan. The procedure allows a number of different types of sensitivity tests to be conducted.  相似文献   

9.
ABSTRACT: A procedure using a simple, empirically‐based model that makes efficient use of available information has been developed for designing a ground water monitoring well network. A moving plume is described by siting wells in a sequential manner, relying upon two‐dimensional concentration data obtained from previously installed wells to determine the locations of future wells. Data sets from two well known, densely monitored natural gradient tracer studies were used to test the procedure. Plumes defined by all information in the original networks were compared to those defined by reduced networks designed by the new procedure. The new procedure tracked the plumes using only a portion of that information. The new procedure could have reduced the number of wells in the original tests by about 50 percent without appreciable loss of plume information as measured by plume location and extent and by tracer mass.  相似文献   

10.
A diversion system has been designed to carry the flow from East Fork of Coal Creek around the area proposed for mining at Thunder Basin Coal Company's (TBCC) Coal Creek mine in Campbell County, Wyoming. This paper describes the field and analysis procedures necessary to prepare the diversion design and impact evaluation, and the innovative concepts developed for the diversion system design to minimize impacts on downstream channel stability. Under the proposed diversion system design, water from the East Basin of Coal Creek will be diverted at two locations. At one location, flow will be impounded by a small dam and decanted by a pump through a pipeline into East Fork at the location of the second diversion. At this location, a training dike will be placed across the stream channel to divert flows into a diversion channel. Gravity flow along the diversion channel will deliver water to a playa area which will be converted into a detention basin by placing a small dam across its southern end. Flows up to the magnitude of the 24-hour 2-year peak flow will be passed directly through the detention basin into Middle Fork with negligible attenuation of flow rates. For less frequent events, water will be stored in the detention basin in order to prevent velocities in Lower Middle Fork from exceeding the maximum permissible velocity above which scouring may occur. Evaporation and seepage losses from the diversion system were estimated to be small and should be more than offset by the addition of water from the playa drainage basin into the Coal Creek drainage. Velocities predicted for the Lower Middle Fork after-the diversion is constructed are expected to be low enough that significant erosion of the channel is not expected to occur.  相似文献   

11.
ABSTRACT: The design and implementation of a national surface water quality monitoring network for New Zealand are described. Some of the lessons learned from the first year of operation are also addressed. Underpinning the design, and specified in advance, are the goal and objectives, the data quality assurance system, and the mechanism for data interpretation and reporting. Because of the difficulties associated with the use of a multitude of different agencies, only one agency is involved in field work and one laboratory undertakes the analysis. Staff training has been given a high priority. The network has been designed to give good trend detectability for regular sampling over a 5–10 year period.  相似文献   

12.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

13.
ABSTRACT: Region‐of‐influence (RoI) approaches for estimating stream flow characteristics at ungaged sites were applied and evaluated in a case study of the 50‐year peak discharge in the Gulf‐Atlantic Rolling Plains of the southeastern United States. Linear regression against basin characteristics was performed for each ungaged site considered based on data from a region of influence containing the n closest gages in predictor variable (PRoI) or geographic (GRoI) space. Augmentation of this count based cutoff by a distance based cutoff also was considered. Prediction errors were evaluated for an independent (split‐sampled) dataset. For the dataset and metrics considered here: (1) for either PRoI or GRoI, optimal results were found when the simpler count based cutoff, rather than the distance augmented cutoff, was used; (2) GRoI produced lower error than PRoI when applied indiscriminately over the entire study region; (3) PRoI performance improved considerably when Rol was restricted to predefined geographic subregions.  相似文献   

14.
ABSTRACT: The Food Quality Protection Act of 1996 requires that human exposure to pesticides through drinking water be considered when establishing pesticide tolerances in food. Several systematic and seasonally weighted systematic sampling strategies for estimating pesticide concentrations in surface water were evaluated through Monte Carlo simulation, using intensive datasets from four sites in northwestern Ohio. The number of samples for the strategies ranged from 4 to 120 per year. Sampling strategies with a minimal sampling frequency outside the growing season can be used for estimating time weighted mean and percentile concentrations of pesticides with little loss of accuracy and precision, compared to strategies with the same sampling frequency year round. Less frequent sampling strategies can be used at large sites. A sampling frequency of 10 times monthly during the pesticide runoff period at a 90 km2 basin and four times monthly at a 16,400 km2 basin provided estimates of the time weighted mean, 90th, 95th, and 99th percentile concentrations that fell within 50 percent of the true value virtually all of the time. By taking into account basin size and the periodic nature of pesticide runoff, costs of obtaining estimates of time weighted mean and percentile pesticide concentrations can be minimized.  相似文献   

15.
ABSTRACT: This work presents a flexible system called GIS‐based Flood Information System (GFIS) for floodplain modeling, flood damages calculation, and flood information support. It includes two major components, namely floodplain modeling and custom designed modules. Model parameters and input data are gathered, reviewed, and compiled using custom designed modules. Through these modules, it is possible for GFIS to control the process of flood‐plain modeling, presentation of simulation results, and calculation of flood damages. Empirical stage‐damage curves are used to calculate the flood damages. These curves were generated from stage‐damage surveys of anthropogenic structures, crops, etc., in the coastal region of a frequently flooded area in Chia‐I County, Taiwan. The average annual flood damages are calculated with exceedance probability and flood damages for the designed rainfalls of 2, 5, 10, 25, 50, 100, and 200 year recurrence intervals with a duration of 24 hours. The average annual flood depth in this study area can also be calculated using the same method. The primary advantages of GFIS are its ability to accurately predict the locations of flood area, depth, and duration; calculate flood damages in the floodplain; and compare the reduction of flood damages for flood mitigation plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号