首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
活性炭分别经过不同的酸碱处理,采用红外光谱、Boehm滴定和比表面积分析仪对其进行了表征,并测定了改性活性炭对甲苯的吸附性能。结果表明:HNO_3改性会使活性炭表面的酸性基团含量增加,碱性基团含量减少,NaOH和NaHCO_3改性结果则正好相反。吸附实验表明,碱性基团含量增加有利于提高活性炭对甲苯的吸附能力,而酸性基团含量增加则降低了这一能力。  相似文献   

2.
《环境工程》2015,33(1):95-99
采用浸渍焙烧法对活性炭进行铜负载改性,并用于甲苯、乙酸乙酯及甲苯-乙酸乙酯二元混合气体的吸附。结果表明:醋酸铜负载量1.5%时活性炭吸附性能最好,对于单组分气体吸附,改性活性炭对甲苯和乙酸乙酯的吸附量较未改性前分别提高了29.7%和21.3%,穿透时间分别延迟了19.3%、18.6%;对于二元混合气体吸附,改性后活性炭较未改性活性炭对甲苯和乙酸乙酯的吸附量分别提高了19.4%和33.0%。采用BET、SEM、FTIR、XRD等分析表明,铜负载改性后的活性炭比表面积变大、总孔容变大,且铜与VOC的络合作用是改性后吸附量提高的主要原因。  相似文献   

3.
以城市污水厂脱水污泥为原料,采用ZnCl2化学活化法,通过添加适量锯末(SAC-W)或椰壳(SAC-C)制备出不同污泥活性炭,其比表面积分别为450.3 m2/g和539.4 m2/g,比纯污泥活性炭的比表面积增加了31.63%和57.67%。将污泥活性炭和选用的煤质活性炭(CAC)用于甲苯动态吸附实验,研究不同活性炭的吸附性能。结果表明,在相同的甲苯初始浓度下,平衡吸附量大小顺序为SAC-C>CAC>SAC-W,污泥活性炭表现较好的吸附性能。对污泥活性炭进行理化性能分析,发现中孔和化学吸附作用对吸附量增加有一定贡献。污泥活性炭的吸附平衡与Langmuir方程拟合较好,相关系数R2为0.995。  相似文献   

4.
由于挥发性有机化合物(VOCs)对人类健康和生态环境的危害巨大,因此VOCs控制技术的研究显得尤为重要.活性炭吸附法具有技术成熟、操作简单、净化效率高、能耗低以及可回收等优势,是净化VOCs最经济、有效的方法之一.主要综述了活性炭在脱除VOCs方面的研究进展,包括活性炭的制备和改性技术及其对VOCs的吸附性能、活性炭吸...  相似文献   

5.
为了研究活性炭吸附挥发性有机物工艺过程参数,采用实验方法测得活性炭吸附苯的吸附量和吸附速率,然后在实验数据的基础之上建立了活性炭吸附苯过程的三维非稳态数学模型,并利用该数值模型研究了混合气体入口速度和入口苯浓度对吸附过程中U型管内的苯浓度、温度和压力分布的影响。结果表明:被吸附气体苯的入口浓度和混合气体入口速度增大时,多孔介质区及其周围区苯的摩尔分数和压力差均增大;与多孔介质区下游管段相比,上游的温度梯度更大,热阻更大;入口苯浓度越大,热量在多孔介质下游管段传递的距离更长。  相似文献   

6.
废弃物基活性炭对VOCs废气的治理   总被引:1,自引:1,他引:0  
研究了废弃物基活性炭在对VOCs吸附过程中的主要影响因素。结果表明废弃物基活性炭完全可用于VOCs的净化治理工艺。  相似文献   

7.
以小麦秸秆为原材料,ZnCl2为活化剂,微波加热辐照制备小麦秸秆活性炭。通过改变浸渍比、微波功率、活化时间等因素制得秸秆活性炭比表面积最大为1 230 m2/g。并将制备的秸秆活性炭和选取的商品活性炭用于甲苯的动态吸附试验,研究秸秆活性炭吸附甲苯的性能。结果表明,单位面积秸秆活性炭和商品活性炭吸附甲苯量分别为0.267、0.276 mg/m2,说明秸秆活性炭和商品活性炭吸附性能相当。同时对吸附结果进行Langmuir方程拟合,相关系数R2为0.997。  相似文献   

8.
粘胶基活性炭纤维对甲苯的动态吸附性能研究   总被引:4,自引:2,他引:4  
采用动态吸附实验装置,研究了温度、浓度、流速、湿度和水蒸汽再生对固定床吸附器中粘胶基活性碳纤维(viscoserayon-basedACFs)吸附甲苯废气的平衡吸附量的影响。实验结果可为甲苯废气吸附过程的设计、预测和优化提供参考。  相似文献   

9.
2种改性活性炭对甲苯吸附性能的对比研究   总被引:2,自引:3,他引:2  
利用微波、电炉加热对活性炭进行改性,并测定了改性前后不同种类活性炭对甲苯的吸附性能、表面酸碱官能团含量以及比表面积.结果表明,对于微波改性,随着改性温度升高,活性炭对甲苯的吸附量逐渐增大,表面碱性官能团含量也相应增加,比表面积相应减小.改性温度850℃时活性炭吸附甲苯性能最高,650℃与450℃改性后活性炭吸附甲苯的性能相差不大.电加热改性也具有类似的趋势,但对甲苯的吸附性能总体低于微波改性.扫描电镜表征显示,热改性去除了活性炭孔道内的杂质,使活性炭内部孔道更加通畅,有利于提高吸附甲苯的能力,但温度升高同样存在炭骨架收缩,孔道变窄的弊端.微波加热和电炉加热在原理和热传递方向上的不同.是导致改性结果之间差别的关键问题.  相似文献   

10.
研究了不同预处理方法下活性炭纤维对甲苯的等温吸附,以评价预处理方法对其吸附性能产生的影响,结果表明:经(1 9)HCl处理的ACF及蒸馏水蒸煮处理过的ACF与未处理的ACF相比,对甲苯的吸附性能有十分显著的提高;处理后的ACF在35℃时的甲苯吸附量仍明显高于未经处理的ACF在25℃下的甲苯吸附量.  相似文献   

11.
焦化废水原水中有机污染物的活性炭吸附过程解析   总被引:6,自引:0,他引:6  
以焦化废水原水作为研究对象,采用粉末活性炭作为吸附剂,考察活性炭投加量、温度、pH及反应时间对废水中主要有机污染物去除的影响规律,结合UV-Vis吸收光谱及GC/MS对吸附过程中有机物组分的变化进行定性和半定量分析.结果表明,在最佳反应条件即活性炭投加量6g·L-1,温度30, pH=9,反应时间20min的情况下处理废水有机物去除率大于70%,原水中检测出的56种有机物中的45种被去除,如长链烷烃、多环芳香族及氮杂环化合物等的浓度降至检测限以下,剩余的11种有机物中苯胺、苯酚、吲哚、乙酸-2-甲基苯酯的去除率分别达到63.5%、42.6%、88.1%、28.1%,甲苯酚(邻、间)和二甲苯酚(5种)去除率在70%和85%以上.结果分析表明,多组分有机污染物共存体系的焦化废水活性炭吸附过程中,多环芳香族和氮杂环等弱极性且-ΔG°较大的大分子有机物优先被吸附且吸附容量大,构成了快速吸附过程;而苯胺、苯酚等强极性且-ΔG0较小的小分子单苯环有机物则表现为弱吸附过程.  相似文献   

12.
考察了亚甲基蓝和单宁酸在金属负载活性炭表面的吸附行为,并用Langmuir与Freundlich方程对等温吸附线进行拟合。结果表明,亚甲基蓝在活性炭表面倾向于多分子层吸附,而单宁酸则倾向于单分子层吸附;金属负载降低了活性炭对有机污染物的饱和吸附容量,但新建的金属氧化物活性中心可促进单宁酸在低浓度下的吸附。金属负载改性是饮用水深度处理中活性炭滤料改性的重要方向。  相似文献   

13.
韩忠娟  罗福坤  李泽清 《环境科学》2011,32(12):3662-3666
蜂窝状活性炭适于处理大风量、低浓度有机废气,通过建立动态吸-脱附实验装置,系统研究了不同吸附质、入口甲苯浓度、空床气速、脱附温度等参数对其吸-脱附性能的影响.结果表明,在规定出口甲苯浓度时,降低入口甲苯浓度,蜂窝状活性炭可持续吸附时间增加,吸附效率提高;在工程应用吸附过程中,空床气速推荐取1.2~1.8 m·s-1.在脱附过程中,出口甲苯浓度均出现峰值,随着脱附温度升高,曲线波动越大,工程应用中推荐脱附温度90℃;脱附空床气速对出口甲苯浓度峰值有影响,推荐取0.2~0.4 m·s-1.  相似文献   

14.
污泥活性炭理化性质表征及吸附抗生素效果研究   总被引:2,自引:0,他引:2  
文章以北京方庄污水处理厂的浓缩和脱水污泥为原料,采用ZnCl2活化法分别制备污泥活性炭。对制得的污泥活性炭进行表征,并将其应用于加替沙星废水的处理。研究2种污泥活性炭吸附反应的吸附时间、吸附剂投加量、pH值、初始浓度4个因子对吸附量的影响,设计正交实验。正交实验结果表明:2种污泥活性炭受到4个因子影响程度相当,表现出明显的相似性,但短期吸附时,脱水污泥表现出更好的吸附性能。初始浓度对吸附量的影响最大,获得最大吸附量的条件组合为:初始浓度200 mg/L,投加量0.05 g,pH=9,t=2 h。浓缩和脱水污泥活性炭的最大吸附量分别可达34.541 mg/g和34.925 mg/g,表明2种污泥活性炭对加替沙星均有良好的吸附效果。污泥活性炭作为一种废水吸附剂,是废水处理的一种新途径。  相似文献   

15.
郭璇  陈绍棋 《地球与环境》2017,45(5):515-522
以日本长良川原水为研究对象,提高水处理出水水质为目标,研究了生物活性炭(BAC)小柱对原水中天然有机物(NOM)的去除效果。比较了不同NOM进水浓度时BAC小柱对其的去除率,研究了小柱层内及出水中NOM的相对分子量分布随着通水时间增加的变化情况,并利用结合了理想吸附溶液理论(IAST)的平推流表面扩散模型对出水中NOM的浓度进行模拟。结果表明,BAC小柱对不同浓度原水中NOM的去除率均高于相同试验条件下的粒状活性炭(GAC)小柱;BAC小柱对相对分子量分布为1000~5200g/mol内各分子量区间的有机物均可去除;平推流表面扩散模型对试验数据拟合结果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号