首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Information on population sizes and trends of threatened species is essential for their conservation, but obtaining reliable estimates can be challenging. We devised a method to improve the precision of estimates of population size obtained from capture–recapture studies for species with low capture and recapture probabilities and short seasonal activity, illustrated with population data of an elusive grasshopper (Prionotropis rhodanica). We used data from 5 capture–recapture studies to identify methodological and environmental factors affecting capture and recapture probabilities and estimates of population size. In a simulation, we used the population size and capture and recapture probability estimates obtained from the field studies to identify the minimum number of sampling occasions needed to obtain unbiased and robust estimates of population size. Based on these results we optimized the capture–recapture design, implemented it in 2 additional studies, and compared their precision with those of the nonoptimized studies. Additionally, we simulated scenarios based on thresholds of population size in criteria C and D of the International Union for Conservation of Nature (IUCN) Red List to investigate whether estimates of population size for elusive species can reliably inform red-list assessments. Identifying parameters that affect capture and recapture probabilities (for the grasshopper time since emergence of first adults) and optimizing field protocols based on this information reduced study effort (−6% to −27% sampling occasions) and provided more precise estimates of population size (reduced coefficient of variation) compared with nonoptimized studies. Estimates of population size from the scenarios based on the IUCN thresholds were mostly unbiased and robust (only the combination of very small populations and little study effort produced unreliable estimates), suggesting capture–recapture can be considered reliable for informing red-list assessments. Although capture–recapture remains difficult and costly for elusive species, our optimization procedure can help determine efficient protocols to increase data quality and minimize monitoring effort.  相似文献   

2.
Population abundance estimates are important for management but can be challenging to determine in low‐density, wide‐ranging, and endangered species, such as Sonoran pronghorn (Antilocapra americana sonoriensis). The Sonoran pronghorn population has been increasing; however, population estimates are currently derived from a biennial aerial count that does not provide survival or recruitment estimates. We identified individuals through noninvasively collected fecal DNA and used robust‐design capture–recapture to estimate abundance and survival for Sonoran pronghorn in the United States from 2013 to 2014. In 2014 we generated separate population estimates for pronghorn gathered near 13 different artificial water holes and for pronghorn not near water holes. The population using artificial water holes had 116 (95% CI 102–131) and 121 individuals (95% CI 112–132) in 2013 and 2014, respectively. For all locations, we estimated there were 144 individuals (95% CI 132–157). Adults had higher annual survival probabilities (0.83, 95% CI 0.69–0.92) than fawns (0.41, 95% CI 0.21–0.65). Our use of targeted noninvasive genetic sampling and capture–recapture with Sonoran pronghorn fecal DNA was an effective method for monitoring a large proportion of the population. Our results provided the first survival estimates for this population in over 2 decades and precise estimates of the population using artificial water holes. Our method could be used for targeted sampling of broadly distributed species in other systems, such as in African savanna ecosystems, where many species congregate at watering sites.  相似文献   

3.
Sex- and age-class-specific survival probabilities of a southern Great Barrier Reef green sea turtle population were estimated using a capture–mark–recapture (CMR) study and a Cormack–Jolly–Seber (CJS) modelling approach. The CMR history profiles for 954 individual turtles tagged over a 9-year period (1984–1992) were classified into three age classes (adult, subadult, juvenile) based on somatic growth and reproductive traits. Reduced-parameter CJS models, accounting for constant survival and time-specific recapture, fitted best for all age classes. There were no significant sex-specific differences in either survival or recapture probabilities for any age class. Mean annual adult survival was estimated at 0.9482 (95% CI: 0.92–0.98) and was significantly higher than survival for either subadults or juveniles. Mean annual subadult survival was 0.8474 (95% CI: 0.79–0.91), which was not significantly different from mean annual juvenile survival estimated at 0.8804 (95% CI: 0.84–0.93). The time-specific adult recapture probabilities were a function of sampling effort but this was not the case for either juveniles or subadults. The sampling effort effect was accounted for explicitly in the estimation of adult survival and recapture probabilities. These are the first comprehensive sex- and age-class-specific survival and recapture probability estimates for a green sea turtle population derived from a long-term CMR program.Communicated by M.S. Johnson, Crawley  相似文献   

4.
Capture-mark-recapture (CMR) analyses aim primarily at estimating relevant life history parameters, despite the fact that some individuals are not always recaptured, even if alive on the study site. Applying such approaches to species with a complex life cycle, such as insects, remains challenging because each change of stage tends to cause mark loss through molting. We developed a multistate model based on three exclusive events ("dead", "surviving and molting", and "surviving and staying in the same larval stage") to estimate probabilities of survival and mark loss. Estimates of biologically relevant parameters were derived from those of the probabilities of transition between these states. The model was applied to data from radio-tracking diodes glued on grasshoppers. The estimates of recapture probabilities decreased throughout the season for animals remaining alive, while the detection of dead animals and lost diodes was exhaustive. The survival probability was higher for larvae than for adults (0.98 vs. 0.96), and mark loss was stronger in larvae than in adults (0.09 vs. 0.06). We show that the survival rate of a species with a high rate of mark loss can be estimated using multistate models, provided that marks can be recovered after being lost. These models are flexible enough to test for several effects that potentially affect survival and mark loss probabilities.  相似文献   

5.
Abstract:  Demographic data of rare and endangered species are often too sparse to estimate vital rates and population size with sufficient precision for understanding population growth and decline. Yet, the combination of different sources of demographic data into one statistical model holds promise. We applied Bayesian integrated population modeling to demographic data from a colony of the endangered greater horseshoe bats (Rhinolophus ferrumequinum) . Available data were the number of subadults and adults emerging from the colony roost at dusk, the number of newborns from 1991 to 2005, and recapture data of subadults and adults from 2004 and 2005. Survival rates did not differ between sexes, and demographic rates remained constant across time. The greater horseshoe bat is a long-lived species with high survival rates (first year: 0.49 [SD 0.06]; adults: 0.91 [SD 0.02]) and low fecundity (0.74 [SD 0.12]). The yearly average population growth was 4.4% (SD 0.1%) and there were 92 (SD 10) adults in the colony in year 2005. Had we analyzed each data set separately, we would not have been able to estimate fecundity, the estimates of survival would have been less precise, and the estimate of population growth biased. Our results demonstrate that integrated models are suitable for obtaining crucial demographic information from limited data.  相似文献   

6.
Program MARK provides > 65 data types in a common configuration for the estimation of population parameters from mark-encounter data. Encounter information from live captures, live resightings, and dead recoveries can be incorporated to estimate demographic parameters. Available estimates include survival (S or ϕ), rate of population change (λ), transition rates between strata (Ψ), emigration and immigration rates, and population size (N). Although N is the parameter most often desired by biologists, N is one of the most difficult parameters to estimate precisely without bias for a geographically and demographically closed population. The set of closed population estimation models available in Program MARK incorporate time (t) and behavioral (b) variation, and individual heterogeneity (h) in the estimation of capture and recapture probabilities in a likelihood framework. The full range of models from M 0 (null model with all capture and recapture probabilities equal) to M tbh are possible, including the ability to include temporal, group, and individual covariates to model capture and recapture probabilities. Both the full likelihood formulation of Otis et al. (1978) and the conditional model formulation of Huggins (1989, 1991) and Alho (1990) are provided in Program MARK, and all of these models are incorporated into the robust design (Kendall et al. 1995, 1997; Kendall and Nichols 1995) and robust-design multistrata (Hestbeck et al. 1991, Brownie et al. 1993) data types. Model selection is performed with AICc (Burnham and Anderson 2002) and model averaging (Burnham and Anderson 2002) is available in Program MARK to provide estimates of N with standard error that reflect model selection uncertainty.  相似文献   

7.
Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture‐recapture methods. From 2006 to 2012, we sampled across 624–1026 km2 with 137–200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture‐recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood‐based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km2, abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture–recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82–90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low‐density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade.  相似文献   

8.
Assessing the effects of diseases on wildlife populations can be difficult in the absence of observed mortalities, but it is crucial for threat assessment and conservation. We performed an intensive capture‐mark‐recapture study across seasons and years to investigate the effect of chytridiomycosis on demographics in 2 populations of the threatened common mist frog (Litoria rheocola) in the lowland wet tropics of Queensland, Australia. Infection prevalence was the best predictor for apparent survival probability in adult males and varied widely with season (0–65%). Infection prevalence was highest in winter months when monthly survival probabilities were low (approximately 70%). Populations at both sites exhibited very low annual survival probabilities (12–15%) but high recruitment (71–91%), which resulted in population growth rates that fluctuated seasonally. Our results suggest that even in the absence of observed mortalities and continued declines, and despite host–pathogen co‐existence for multiple host generations over almost 2 decades, chytridiomycosis continues to have substantial seasonally fluctuating population‐level effects on amphibian survival, which necessitates increased recruitment for population persistence. Similarly infected populations may thus be under continued threat from chytridiomycosis which may render them vulnerable to other threatening processes, particularly those affecting recruitment success. Quitridiomicosis y Mortalidad Estacional de Ranas Asociadas a Arroyos Tropicales Quince Años Después de la Introducción de Batrachochytrium dendrobatidisvsp  相似文献   

9.
Fisheries bycatch is a critical threat to sea turtle populations worldwide, particularly because turtles are vulnerable to multiple gear types. The Canary Current is an intensely fished region, yet there has been no demographic assessment integrating bycatch and population management information of the globally significant Cabo Verde loggerhead turtle (Caretta caretta) population. Using Boa Vista island (Eastern Cabo Verde) subpopulation data from capture–recapture and nest monitoring (2013–2019), we evaluated population viability and estimated regional bycatch rates (2016–2020) in longline, trawl, purse-seine, and artisanal fisheries. We further evaluated current nesting trends in the context of bycatch estimates, existing hatchery conservation measures, and environmental (net primary productivity) variability in turtle foraging grounds. We projected that current bycatch mortality rates would lead to the near extinction of the Boa Vista subpopulation. Bycatch reduction in longline fisheries and all fisheries combined would increase finite population growth rate by 1.76% and 1.95%, respectively. Hatchery conservation increased hatchling production and reduced extinction risk, but alone it could not achieve population growth. Short-term increases in nest counts (2013–2021), putatively driven by temporary increases in net primary productivity, may be masking ongoing long-term population declines. When fecundity was linked to net primary productivity, our hindcast models simultaneously predicted these opposing long-term and short-term trends. Consequently, our results showed conservation management must diversify from land-based management. The masking effect we found has broad-reaching implications for monitoring sea turtle populations worldwide, demonstrating the importance of directly estimating adult survival and that nest counts might inadequately reflect underlying population trends.  相似文献   

10.
In mark-recapture studies, various techniques can be used to uniquely identify individual animals, such as ringing, tagging or photo-identification using natural markings. In some long-term studies more than one type of marking procedure may be implemented during the study period. In these circumstances, ignoring the different mark types can produce biased survival estimates since the assumption that the different mark types are equally catchable (homogeneous capture probability across mark types) may be incorrect. We implement an integrated approach where we simultaneously analyse data obtained using three different marking techniques, assuming that animals can be cross-classified across the different mark types. We discriminate between competing models using the AIC statistic. This technique also allows us to estimate both relative mark-loss probabilities and relative recapture efficiency rates for the different marking methods. We initially perform a simulation study to explore the different biases that can be introduced if we assume a homogeneous recapture probability over mark type, before applying the method to a real dataset. We make use of data obtained from an intensive long-term observational study of UK female grey seals (Halichoerus grypus) at a single breeding colony, where three different methods are used to identify individuals within a single study: branding, tagging and photo-identification based on seal coat pattern or pelage.  相似文献   

11.
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations.  相似文献   

12.
The estimation of population density animal population parameters, such as capture probability, population size, or population density, is an important issue in many ecological applications. Capture–recapture data may be considered as repeated observations that are often correlated over time. If these correlations are not taken into account then parameter estimates may be biased, possibly producing misleading results. We propose a generalized estimating equations (GEE) approach to account for correlation over time instead of assuming independence as in the traditional closed population capture–recapture studies. We also account for heterogeneity among observed individuals and over-dispersion, modelling capture probabilities as a function of covariates. The GEE versions of all closed population capture–recapture models and their corresponding estimating equations are proposed. We evaluate the effect of accounting for correlation structures on capture–recapture model selection based on the quasi-likelihood information criterion (QIC). An example is used for an illustrative application and for comparison to currently used methodology. A Horvitz–Thompson-like estimator is used to obtain estimates of population size based on conditional arguments. A simulation study is conducted to evaluate the performance of the GEE approach in capture-recapture studies. The GEE approach performs well for estimating population parameters, particularly when capture probabilities are high. The simulation results also reveal that estimated population size varies on the nature of the existing correlation among capture occasions.  相似文献   

13.
Abstract: Pheromone‐based monitoring is a promising new method for assessing the conservation status of many threatened insect species. We examined the versatility and usefulness of pheromone‐based monitoring by integrating a pheromone–kairomone trapping system and pitfall trapping system in the monitoring of two saproxylic beetles, the hermit beetle Osmoderma eremita (Coleoptera: Scarabaeidae) and its predator Elater ferrugineus (Coleoptera: Elateridae), which live inside hollow trees. We performed mark–recapture studies of both species with unbaited pitfall traps in oak hollows combined with pheromone‐baited funnel traps suspended from oak branches to intercept dispersing individuals. For O. eremita, the integrated trapping system showed that the population in the study sites may be considerably higher than estimates based on extrapolation from pitfall trapping alone (approximately 3400 vs. 1100 or 1800 individuals, respectively). Recaptures between odor‐baited funnel traps showed that males and females had similar dispersal rates, but estimating the number of dispersing individuals was problematic due to declining recapture probability between subsequent capture events. Our conservative estimate, assuming a linear decrease in capture probability, suggested that around 1900 individuals, or at least half of the O. eremita population, may perform flights from their natal host trees, representing higher dispersal rates than previous estimates. E. ferrugineus was rarely caught in pitfall traps. One hundred thirty‐nine individuals, likely almost exclusively females, were caught in odor‐baited funnel traps with approximately 4% recapture probability. If recapture probability over consecutive capture events follows that of O. eremita, this would correspond to a total population size of 2500–3000 individuals of the predator; similar to its supposed prey O. eremita. Our results demonstrate that pheromone‐based monitoring is a valuable tool in the study of species or life‐history stages that would otherwise be inaccessible.  相似文献   

14.
Molecular methods of assessing dispersal have become increasingly powerful and have superseded direct methods of studying dispersal. Although now less popular, direct methods of studying dispersal remain important tools for understanding the evolution of dispersal. Here, we use data from Siberian jays Perisoreus infaustus, a group-living bird species, to compare natal dispersal distances and rates using visual mark–recapture, radio-tracking and microsatellite data. Siberian jays have bimodal natal dispersal timing; socially dominant offspring remain with their parents for up to 5 years (delayed dispersers), while they force their subordinate brood mates to leave the parental territory at independence (early dispersers). Early dispersers moved about 9,000 m (visual mark–recapture, radio-tracking) before settling in a group as a non-breeder. In contrast, delayed dispersers moved about 1,250 m (visual mark–recapture only) and mainly moved to a breeding opening. Dispersal distances were greater in managed habitat compared to natural habitat for both early and delayed dispersers. Molecular estimates based on 23 microsatellite loci and geographical locations supported distance estimates from the direct methods. Our study shows that molecular methods are at least 22 times cheaper than direct methods and match estimates of dispersal distance from direct methods. However, molecular estimates do not give insight into the behavioural mechanisms behind dispersal decisions. Thus, to understand the evolution of dispersal, it is important to combine direct and indirect methods, which will give insights into the behavioural processes affecting dispersal decisions, allowing proximate dispersal decisions to be linked to the ultimate consequences thereof.  相似文献   

15.
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.  相似文献   

16.
Abstract: Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek‐rub lure sticks, extracted DNA from the samples, and identified each animals’ genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture‐recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home‐range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap‐ and individual‐level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture‐recapture models will improve population assessments, especially for rare and elusive animals.  相似文献   

17.
Citizen scientists are increasingly engaged in gathering biodiversity information, but trade‐offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011–2014) of a short‐duration citizen science project (Big Butterfly Count [BBC]) with those from long‐running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3‐week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3‐week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short‐duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species’ flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass‐participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass‐participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land‐use types), as well as serving to reconnect an increasingly urban human population with nature.  相似文献   

18.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   

19.
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide‐ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3‐month survey and adapted a Bayesian spatially explicit capture‐recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture‐recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km2, and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions.  相似文献   

20.
Abstract: Sport‐fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4‐year, replicated whole‐lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non‐native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish‐free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish‐removal lakes were more than twice as high as the rates for fish‐free reference lakes and lakes that contained fish. Population growth in the fish‐removal lakes was likely due to better on‐site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号