首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

2.
ABSTRACT: Data collected at a 79-acre urban watershed in Albuquerque, New Mexico, were used to calibrate and verify the Distributed Routing Rainfall-Runoff Model, a parametric watershed model. Standard errors of estimate for the 38 calibration storms were 33 percent and 38 percent, respectively, for volumes and peaks; and for the 46 verification storms were 29 percent and 37 percent, respectively, for volumes and peaks. Correlation coefficients for peaks were 0.8 and 0.95, respectively, for calibration and verification storms.  相似文献   

3.
4.
ABSTRACT: There is a lamentable absence of comprehensive planning in the current cursade to improve water quality. A serious shortcoming is the lack of evaluation of the effects of waste water treatment upon environmental quality. At some point in time the public may ask what they have obtained for their money. The nature of pollution in a river basin demands a coordinated attack against it. Engineering and economic criteria suggest that a properly empowered river basin authority would be the logical organization to plan and operate a water quality management system. Several forms of such authorities have operated effectively and efficiently for many years in the United States and other industrialized countries. Examples of successful river basin authorities and their advantages and methods of operation are discussed.  相似文献   

5.
A study was made to determine the impact on water quality due to water resource development in a large river basin in a semi-arid region of West Africa. Mathematical modeling and the examination of case histories were used to project impacts. The impacts associated with changes in water quality were shown to be slight assuming that modern basin and agricultural management practices are adopted. Analytical techniques normally implemented in studies of more highly developed basins are useful for analysis of water quality impacts in relatively undeveloped basins.  相似文献   

6.
ABSTRACT: A micro computer based Watershed Information System (W.LS.) is developed to assist in the preparation of input files for the hydrologic simulation model HEC-1. This system consists of three phases. Phase I utilizes the capabilities of AutoCAD version 9 and three programs, BASINS, PLANES, and CHANNELS, to extract, organize, and display watershed data. Phase II uses the program CN to calculate some HEC-1 parameter values. Phase II utilizes the program HECUPDATE to create HEC-1 input files. The system input includes topographic, soils, land use, watershed geometry data, and a skeletal HEC-1 input file. Output from the system includes a summary User Reference File, a Soils File, a Land Use File, a Watershed Geometry File, a Curve Number File, and a HEC-1 input file, which is ready to run. The W.I.S. has been applied to Macks Creek Watershed in southwest Idaho.  相似文献   

7.
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly.  相似文献   

8.
ABSTRACT: This study examined the disposition of streamflow increases that could be created by vegetation management on forest land along the upper reaches of the Colorado River. A network optimization model was used to simulate water flow, storage, consumptive use, and loss within the entire Colorado River Basin with and without the flow increases, according to various scenarios incorporating both current and future consumptive use levels as well as existing and potential institutional constraints. Results indicate that very little of the flow increases would be consumptively used at current use levels, or even at future use levels, if water allocation institutions remain unchanged. Given future use levels and economically based water allocation institutions, up to one-half of the flow increases could be consumptively used. The timing of streamflow increases, and the institutional constraints on water allocation, often limit the potential for consumptive use of flow increases.  相似文献   

9.
Substantial conflict exists over water management and allocation in the Platte River Basin of Nebraska. An interdisciplinary computer simulation model, representing the water quantity, water quality, environmental, and economic dimensions of the conflict, was developed in order to analyze the tradeoffs among allocation scenarios. Most importantly, decisionmakers and interest groups were involved in model development. Simulation results for a base case and two scenarios are presented. One scenario favors protection of instream flow for wildlife; the other favors water diversions for agriculture. Impacts of the instream flow scenario, as measured by the amount of land irrigated, groundwater levels, the amount of wildlife habitat for cranes and catfish, and net agricultural benefits did not differ greatly from those of the base case. However, impacts of the diversion scenario were substantial. On the negative side, instream flows and wildlife habitat declined an average of 39 percent; while, on the positive side, groundwater levels and net agricultural benefits each increased 6 percent. The modeling process was successful insofar as it promoted an understanding among the highly diverse interest groups of the systems nature of the Basin. One agreement on a water diversion schedule among three of the parties has been reached, partly as a result of this process. More comprehensive compromises have not yet been forged. Our experience, however, indicates that modeling success at the policymaking level depends more on the extent to which the policymakers understand the model than it does on model sophistication.  相似文献   

10.
ABSTRACT: Ten topographic analysis methods were employed to estimate watershed mean slopes for 13 small forested watersheds (32 to 131 mi2) in East Texas. Of the ten methods employed, the mean slope curve is the most accurate but also the most tedious and laborious one. The method can be simplified by measuring only the lengths of five contours and the areas between these contours within the watershed with little loss of its accuracy. Watershed slopes estimated by the contour length method, the grid contour method, the systematic slope sampling method, and the simplified contour length method are satisfactory for general purposes and relatively simple. The watershed circumference-stream length method, the length-width axis method, the Justin method, and the regression plane method are not suitable for estimating watershed slopes in East Texas without modification.  相似文献   

11.
ABSTRACT: Although the effects of vegetation management on streamflow have been studied in many locations, the effects of augmented streamflow on downstream water users have not been carefully analyzed. This study examines the routing of streamflow increases that could be produced in the Verde River Basin of Arizona. Reservoir management and water routing to users in the Salt River Valley around Phoenix were carefully modeled. Simulation of water routing with and without vegetation modification indicates that, under current institutional conditions, less than one-half of the streamflow increase would reach consumptive users as surface water. Most of the remainder would accumulate in storage until a year of unusually heavy runoff, when it would add to reservoir spills. Under alternative scenarios, from 39 to 58 percent of the streamflow increase was delivered to consumptive users.  相似文献   

12.
ABSTRACT: The analysis of stream flow and several water quality parameters in six Illinois rivers showed both deterioration and improvement in quality indicators during 1976–1977 drought. The adverse impacts were an increase of ammonia and manganese concentrations and, to a lesser degree, increased concentrations of phenol and specific conductance. At the worst point during the drought, the 12-month moving average of monthly ammonia concentration in the Sangamon River was about 620 percent higher than the antecedent value. On the other hand, average concentrations of nitrites and nitrates, total iron, and the number of coliform bacteria significantly decreased. This positive response suggests that streams which are considered unsuitable for municipal supply due to high levels of these quality indicators may be used as emergency sources during droughts.  相似文献   

13.
ABSTRACT: A model for estimating seasonal fecal coliform concentrations in the Tchefuncte River as a function of river discharge was developed. Data on fecal coliform concentration were obtained from the Louisiana Department of Health and Hospitals and were available for a period of 15 years (1975 through 1992) from three locations. Stream flow data were obtained from a gaging station of the U. S. Geological Survey at Folsom, Louisiana. These data were available for 49 years (1943 through 1991). The climate of the area is characterized by different precipitation/runoff mechanisms for the summer and winter seasons. The division for seasons used in this analysis was May through October (summer season), and November through April (winter season). Because of the combined effects of climatic mechanisms causing precipitation and the seasonal variation of evapotranspiration, runoff is greater in the winter season resulting in higher fecal coliform counts in the Tchefuncte River. Statistical analysis revealed a statistically significant relationship between fecal coliform concentration and discharge for each season, at each of three sites on the Tchefuncte River.  相似文献   

14.
ABSTRACT: The potential withdrawal of water from the Mullica River-Great Bay Estuary is southern New Jersey prompted a joint study by biologists and engineers to determine the maximum supply of water that could be diverted from the basin without causing undue environmental impacts. The effect of removal of water from the basin over long periods of time was simulated by review of records of a severe drought. Based on analysis of streamflows and salinities during these drought conditions, minimum mean monthly streamflows were determined corresponding to the maximum salinities tolerable by the fish and shellfish communities, important sources of revenue and recreation in the region. A physically optimized, chance constrained linear programming model was developed for the conjunctive use of ground and surface waters. Adjusting water withdrawal from streamflow and groundwater sources according to physical and seasonal criteria would permit maximum use of the basin's resources, with no additional burden on the ecology of the estuary.  相似文献   

15.
ABSTRACT: A deterministic hydrologic model, encompassing the hydrologic regime and all water uses, is developed by integrating empirical hydrologic relationships. The Brandywine Basin, located in southeastern Pennsylvania and northern Delaware, is used as an example to demonstrate this modeling effort. The basin is divided into 19 subwatersheds to account for the spatial variation of resource characteristics. The output of the model is the response of the hydrologic system to various inputs such as precipitation, land use characteristics and policy decisions. This modeling effort is applicable to watersheds similar to the Brandywine Basin in size, and once the model is developed and validated, can be applied continuously in the management and planning of water resources such as predicting the hydrologic effects of proposed projects and simulating hydrologic information.  相似文献   

16.
ABSTRACT: Two intermittent streams on oak-hickory watersheds in southern Illinois were gaged with a V-notch weir and sampled with an automatic water sampler. Baseline data was collected for a period of three years. Flow volume showed large variations between years and watersheds. Water samples were analyzed for Na, K, Ca, Mg, ortho-P, and NO3-N. Water quality was consistently high, but there were significant differences between the watersheds during the calibration period. One watershed was clearcut in November 1979. One year of postharvest data has been analyzed. Flow volume increased 95 percent, but there was no evidence of increased sedimentation. There were significant increases in the stream water concentrations of K, Mg, and NO3-N of 18 percent, 8 percent, and 274 percent, respectively. Nutrient budgets for the site were not adversely affected by the harvest. The clearcutting operation appears to have had a small impact on the watershed due to minimal disturbance during the logging and below normal precipitation the first year following the harvest.  相似文献   

17.
ABSTRACT: As coal resources are developed in the Northern Great Plains regions, new reservoirs are being considered to meet expanding water demands. The amount of water available for industrial diversion, however, could be limited by regulations that require minimum flow levels to be maintained downstream of the reservoir sites. Computer simulations of potential reservoirs were used to determine to what extent, if any, instream flow requirements might limit the ability of reservoirs to deliver industrial water supplies. Data on instream flow requirements, potential reservoir sites, and historic runoff were input for the simulation of the Powder River Region of Montana and Wyoming. Results of the simulations compared the maximum amount of water available for industrial diversion with and without requiring instream flow criteria.  相似文献   

18.
ABSTRACT: The objective of cost effectiveness has led to the use of mathematical decision models to implement the best water quality control program in a river from the various alternatives available at a time. The paper presents the water quality control program in the Hsintien River in Taiwan by the use of probabilistic programming technique.  相似文献   

19.
ABSTRACT: Spatial distribution of soil and water properties and the correlations between them and crop yield were determined for a natural rainfall environment. Hydraulic conductivity, soil texture, water retention, and soil-water flux were variables used to investigate their relationship to crop yield using multiple regression techniques. Variations in crop yields on a watershed with a 3 to 4 percent slope and moderately erosive soils were related to soil-water characteristics and soil properties along slope and with depth. Climatic conditions to sustain crop growth and yield ranged from inadequate soil water in 1983 to adequate soil water in 1984. Crop yield was predicted with models using both available and measured soil-water content. Available water content provided a better model for the prediction of water yield and does not require field measurements of actual soil-water content. Soil water holding capacity was more significant for predicting crop yield in soils with moderate to high silt content than infiltrability of water into the soil.  相似文献   

20.
ABSTRACT: Control of emergent aquatic plants such as tule (Scirpus acutus Muhl.; Bigel.) is of direct interest to managers of surface waters in Western North America. Where conditions of water velocity and depth occur that permit this and similar species to colonize and grow, their clonal habit may restrict, or even block, open channels within several seasons after their establishment. Fortunately, sufficient flow depth and velocity naturally prevent these plants from growing into and blocking channels. We investigated physical constraints for tule stem growth with the ultimate intent to apply this knowledge in rehabilitating 60 miles of the diverted Owens River in Eastern California, presently choked with emergent growth. Bending stress resulting from hydrodynamic drag on tule stems was found to induce lodging; permanent deformation and consequent loss of function. The depth-velocity envelope describing this process (at 95 percent confidence) is uD/d= 12.8 where u = average velocity acting upon the stem (m/s), D = local depth of flow (m), and d = tule stem diameter at the point of attachment (m). Maintaining a discharge or reconfiguring a channel so this critical depth-velocity-stem diameter envelope is exceeded (predictable using flow models) through the summer growing period should prevent encroachment into an active channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号