共查询到20条相似文献,搜索用时 89 毫秒
1.
2.
地下水中硒存在形态的分析方法 总被引:3,自引:0,他引:3
本文采用含高浓度Mg^2+和SO4^2-的三种地下水样,在PH〈5条件下,地下水样中的SeO3^2-和SeO4^2-选择性地吸附于CuO颗粒物上,然后在PH=12.5时解吸。接着用HGAAS和IC法分别测出SeO3^2-,SeO4^2-浓度。并对二阶阳离子影响水中SeO4^2-的测定作了估算。 相似文献
4.
5.
水和废水中甲乙酮监测分析方法研究 总被引:1,自引:0,他引:1
研究了水和废水中甲乙酮经气提 (吹扫 )在常温下用 2 ,4 -硝基苯肼 (DNPH)酸性饱和溶液吸收 ,经衍生形成甲乙酮腙 ,用CS2 萃取后再用气相色谱 (GC -FID)以OV - 175 % /ShimaliteW为固定相和载体 ,分离测定的方法 ,对水和废水中的甲乙酮的测定获得满意的结果 相似文献
6.
本文分析了电化学-化学法处理硫氢化铵废水的电化学、化学作用机理.讨论了温度、时间、无机盐(NaCl)、电流密度及操作方式对除硫效果的影响.通过正交化实验,找出了技术参数.结果表明:该法可以使硫离子转化为单质硫及硫的含氧酸根,转化率超过99%.经处理后的废水硫化物浓度小于1(PPm),达国家排放标准.废渣可回收硫磺. 相似文献
7.
8.
9.
用低压冲击式采样器 (DLPI) 采集了上海工业区和郊区大气中28nm~9.92μm粒径范围的颗粒物样品,用同步辐射X射线吸收近边结构谱(XANES)和X射线荧光分析(SRXRF) 对样品中硫的化学形态和含量进行了研究.结果表明,粗颗粒物和细颗粒物中的硫,大部分以硫酸盐形式存在;超细颗粒物中除了硫酸盐硫之外,一部分硫以低价的还原态形式存在,可能的化学形态为金属硫化物、噻吩类有机硫化物.细粒子中硫的质量浓度高于粗颗粒,约 70%的硫分布在细粒子中.硫的质量浓度呈多模态分布.工业区的超细颗粒物峰值出现在0.091~0.154μm;细颗粒的分布为积聚模,峰值出现在0.38~0.611μm;粗颗粒分布为粗模态,在1.59~3.98μm和6.57~9.92μm出现2个峰值.郊区的超细颗粒物中硫的质量分布不存在峰值;积聚模出现两个亚模态,分别为峰值在0.261~0.380μm的“凝结模态”和峰值在0.611~0.945μm的“液滴模态”;粗模态峰值在2.38~6.57μm.污染来源和颗粒物形成、转换机制以及不同采样时间的气象条件差异决定了2个地区颗粒物中硫的分布特性,工业区颗粒物中硫的来源有海盐源的贡献,而郊区较少受海洋源的影响. 相似文献
10.
环境中有机锡化合物形态分析方法进展 总被引:7,自引:0,他引:7
本文综述了国内外近20年来环境样品中有机锡化合物的分析技术。对有机锡样品的衍生技术进行了评价;系统介绍了检测有机锡化合物的气相色谱(GC)联用技术、高效液相色谱(HPLC)联用技术以及超临界流体液相色谱(SFC)联用技术。 相似文献
11.
12.
采用石墨电极对含α-氯代环己基苯基甲酮的氯化清洗水进行电化学降解。结果表明,电化学降解对COD的去除效果非常明显,并且随着电流密度增加,COD的去除效率逐渐升高,电流密度由15 mA/cm2增加至100 mA/cm2, COD的去除率从39.7%升高到72.3%;电化学降解作用下,水样可生化性显著提高,降解2 h后,(BOD5)/(COD)由原水的0.22提高到0.46;电化学降解过程中,COD的降解遵循零级反应动力学方程;此外,还对电化学降解过程中α-氯代环己基苯基甲酮的降解途径进行了推测。 相似文献
13.
14.
周成芬 《辽宁城乡环境科技》2003,23(4):45-47
通过对大连重工集团五台文丘里—麻石除尘器脱硫率的测定、各关键点pH值的测定、渣池中各金属含量的测定,说明了以锅炉冲渣水为水源进行湿法除尘,既经济又可达到稳定脱硫的目的。 相似文献
15.
硫磺回收装置尾气焚烧炉阻塞原因分析及对策 总被引:1,自引:0,他引:1
通过对大港炼油厂硫磺回收装置尾气焚烧炉阻塞物组分分析和装置的工艺核算,分析了阻塞物产生的原因和过程,并针对性地提出了实用性较强的防治对策 相似文献
16.
MCRC硫磺回收技术 总被引:1,自引:0,他引:1
林宵红 《石油化工环境保护》1998,(2):37-41
介绍MCRC硫磺回收装置工艺特征,结合装置历次考核标定的情况,对装置负荷、回收率及尾气排放问题进行分析,并介绍了装置整改和完善情况。 相似文献
17.
18.
19.
20.
硫素对氧化还原条件下水稻土氧化铁和砷形态影响 总被引:3,自引:3,他引:3
通过充N2和充O2的氧化还原反应装置,在添加外源砷污染的水稻土中,施用不同形态的无机硫(不施硫S0,单质硫S1和硫酸盐S2),模拟水稻田的氧化还原状况.结果表明,通N2时,土壤溶液氧化还原电位(Eh)在-100~-200 mV之间,溶液pH在7.0~8.0之间,pe+pH为4~7之间;通O2时,溶液Eh在200mV左右,溶液pH在6.5~7.5之间,pe+pH为9~12之间.无论通N2还是通O2,土壤溶出铁的浓度在1.2~1.6 mg·L-1,均有处理S0>S1>S2和AsS0>AsS1>AsS2.在通N2时,各处理HCl提取土壤氧化铁的含量比原土[(21.4±0.3)g·kg-1]低5 g·kg-1,有利于结晶态氧化铁向无定形氧化铁转化和形成Fe2+,无定形氧化铁活化度比原土活化度46.8%有所增加,且处理AsS2(49.4%)AsS2(36.1%).通N2时,土壤溶液中砷浓度变化为AsS0[(1.13±0.04)mg·L-1]>AsS1[(0.89±0.01)mg·L-1]>AsS2[(0.77±0.04)mg·L-1];通O2时,土壤溶液中砷浓度变化AsS1[(0.77±0.01)mg·L-1]>AsS0[(0.20±0.09)mg·L-1]>AsS2[(0.09±0.01)mg·L-1].通N2时,不同处理各形态砷占总砷比例变化为残渣态(34.9%~41.4%)≈专性吸附态(37.4%~39.5%)>晶态铁锰结合态(23.3%~25.6%)>非专性吸附态(2.4%~3.3%)>无定形铁锰结合态(0.5%~0.8%).通O2时,各处理形态砷占总砷比例变化为残渣态(30.8%~39.3%)≈专性吸附态(30.3%~34.7%)>晶态铁锰结合态(26.0%~28.7%)>无定形铁锰结合态(9.3%~10.7%)>非专性吸附态(0.5%~1.6%),其中,无定形铁锰氧化物结合态砷比通N2时提高了约9%,也就是无定形铁锰的老化作用对砷形态转化的影响.这表明还原条件能够使氧化铁的活化度升高,砷的移动性增强,但硫酸盐体系降低氧化铁的活化度,单质硫体系的砷移动性要大于硫酸盐体系的砷移动性. 相似文献