首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Here we demonstrate that an aqueous solution of the herbicide amitrole can be completely depolluted at pH 3.0 by anodic oxidation and electro-Fenton process. Anodic oxidation gives faster degradation with a boron-doped diamond anode than with a Pt anode. Electro-Fenton with a Pt anode and 1 mmol l –1 Fe2+ as catalyst yields the quickest depollution. Amitrole decay always follows a pseudo first-order reaction. NO3 and NH4+ are accumulated in the medium during mineralization, although volatile N-products are also formed. These environmentally friendly electrochemical treatments could be applied to the remediation of wastewaters containing amitrole.  相似文献   

2.
Hazardous wastes are generated in the synthesis of dyes and pigments applied in industries. Efficient methods are thus needed to clean wastewaters. Here, we use anodic oxidation and electro-Fenton with B-doped diamond anode to degrade the synthetic dye indigo in aqueous sodium dithionite. Results show the near-complete mineralization of the dye within 80 min at 500 mA. Mineralization was faster by electro-Fenton than anodic oxidation. The second-order rate constant (k) for the reaction of indigo with ·OH was measured as 4.03 × 109 M?1 s?1 at pH 3.0 and was compared with the rate constants of reactions between dyes and ·OH. The results clearly demonstrate that both electro-Fenton and anodic oxidation can be used to depollute dyes in textile effluent with high efficiency and low cost. The main oxidant, ·OH, being a non-selective reagent, the method could be applied to degrade other organic pollutants.  相似文献   

3.
There is actually increasing concern about the accumulation of antibiotics, such as tetracycline, in soil and water bodies. There is therefore a need for efficient methods to degrade antibiotics and thus clean waters. Here we tested the degradation of tetracycline using the heterogeneous electro-Fenton-pyrite method and compared the results with the conventional electro-Fenton method. The reaction was performed with a boron-doped diamond or Pt anode and carbon-felt cathode allowing electrogeneration of H2O2 from O2 reduction. Results show an increasing tetracycline mineralization using the following methods: anodic oxidation with electrogenerated H2O2, electro-Fenton and then electro-Fenton-pyrite using boron-doped diamond. Ion-exclusion HPLC revealed the complete removal of malic malonic, succinic, acetic, oxalic and oxamic acids. Nitrogen present in tetracycline was mainly mineralized in NH4 +. The higher efficiency of electro-Fenton-pyrite is explained by self-regulation of soluble Fe2+ and pH to 3.0 from pyrite catalyst favoring larger ·OH generation from Fenton’s reaction.  相似文献   

4.
Degradation of the herbicide imazapyr by Fenton reactions   总被引:4,自引:0,他引:4  
The degradation of the herbicide imazapyr has been carried out by three advanced oxidation processes involving iron ions as catalysts: Fentons reagent, photo-Fenton and electro-Fenton. We show that all processes are rapid and efficient. The kinetic rate constant was found to be k=5.4×109 M–1 s–1. The mineralization of imazapyr is almost complete using the photo-Fenton and electro-Fenton processes.  相似文献   

5.
A study to compare the extent of atrazine mineralization in soils from Kenyan sugarcane-cultivated fields with and without history of atrazine use was carried out in the laboratory under controlled conditions. The study was testing the hypothesis that repeated atrazine application to soil will not result in enhanced atrazine mineralization. The study was carried out with 14C-uniformly ring-labeled atrazine in a laboratory under controlled conditions. Atrazine mineralization to 14CO2 in soil with no history of atrazine use was negligible (0.16%) after 163 days of soil incubation. The three metabolites hydroxyatrazine, desisopropylatrazine, and desethylatrazine in the proportion of 17.7%, 1.3%, and 2.6%, respectively, were in the soil after 75 days. In the soil from the sugarcane-cultivated field with history of atrazine use, atrazine mineralization was 89.9% after 98 days. The same soil, amended with mature compost, showed a lag phase of eight days before rapid atrazine mineralization was observed.  相似文献   

6.
Cytostatic drugs are a troublesome class of emerging pollutants in water owing to their potential effects on DNA. Here we studied the removal of 5-fluorouracil from water using the electro-Fenton process. Galvanostatic electrolyses were performed with an undivided laboratory-scale cell equipped with a boron-doped diamond anode and a carbon felt cathode. Results show that the fastest degradation and almost complete mineralization was obtained at a Fe2+ catalyst concentration of 0.2 mM. The absolute rate constant for oxidation of 5-fluorouracil by hydroxyl radicals was 1.52 × 109 M?1 s?1. Oxalic and acetic acids were initially formed as main short-chain aliphatic by-products, then were completely degraded. After 6 h the final solution mainly contained inorganic ions (NH4 +, NO3 ? and F?) and less than 10% of residual organic carbon. Hence, electro-Fenton constitutes an interesting alternative to degrade biorefractory drugs.  相似文献   

7.
This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Artemia nauplii. Results show that at initial concentration of 20 mg L−1, atrazine was completely removed in up to 30 min using 10 mA cm−2 electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.  相似文献   

8.
Here we demonstrate that anodic oxidation with a boron-doped diamond (BDD) electrode can be applied to the remediation of wastewaters containing indigo carmine. This environmentally friendly method decontaminates completely acid and alkaline aqueous solutions of this dye. The degradation rate increases with increasing current and dye concentration. Indigo carmine is more rapidly removed in alkaline than in acid medium, but its kinetics does not follow a defined reaction order. Isatin 5-sulfonic acid is the main aromatic product formed. Oxalic and oxamic acids are generated as ultimate carboxylic acids. The nitrogen of the dye is converted into NH4 + and NO3 .  相似文献   

9.
The photocatalytic degradation of a sulfonylurea herbicide, cinosulfuron, has been studied in TiO2 aqueous suspensions. A first order kinetic law was found. The influence of the initial concentration of cinosulfuron and of the initial radiant flux on the kinetics were evaluated. The identification of the intermediate products was based on high performance liquid chromatography coupled with mass spectrometry analyses (HPLC-MS). The mineralization of cinosulfuron was traced using ion chromatography and total organic carbon (TOC) measurements. These results indicate that the photocatalytic degradation of cinosulfuron leads to CO2, NO3 and SO4 2− as final products, and in addition cyanuric acid (C3H3O3N3), confirming previous results on triazinic ring-containing compounds. Electronic Publication  相似文献   

10.
狼尾草根系对阿特拉津长期胁迫的氧化应激响应   总被引:2,自引:0,他引:2  
通过盆栽实验研究了抗性植物狼尾草根部丙二醛(MDA)、脯氨酸(Pro)、抗坏血酸(As A)含量及超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)等氧化应激生理指标对不同浓度阿特拉津长期(48 d)胁迫的响应规律。结果表明:当阿特拉津胁迫浓度分别高于20 mg·kg~(-1)和50 mg·kg~(-1)时,狼尾草根系的MDA与Pro含量较对照组显著升高(P0.05);随着阿特拉津胁迫浓度的增加,狼尾草根部SOD和GR活性呈先升高后降低的趋势,其中当阿特拉津胁迫浓度为20 mg·kg~(-1)时,SOD和GR活性达到最大值;供试植物根系中As A含量与阿特拉津胁迫浓度呈正相关。综上,中低浓度(≤20 mg·kg~(-1))阿特拉津处理没有对狼尾草的根系产生明显的氧化胁迫效应,狼尾草根系的上述抗氧化应激生理指标对于发挥阿特拉津抗性起着重要的作用。  相似文献   

11.
Swimming pool users are a source of various contaminants and microorganisms. Conventional chlorine-based reagents treatment is commonly used to disinfect water. However, this disinfection treatment has serious serious health issues such as formation of carcinogenic by-products, i.e., trihalomethanes. In order to prevent this problem, an electrochemical disinfection process was carried out using synthetic and real swimming pool waters. The performance of the electrochemical system was evaluated by studying the effect of current intensity (0.5–3.0 A), treatment time, type of anode (Nb/BDD and Ti/Pt) and the initial concentration of pathogens Escherichia coli and P. aeruginosa. Results show that real swimming pool water, initially containing 106 CFU/100 mL of pathogens, was disinfected at current intensities of 1.5 and 3.0 A using, respectively, Nb/BDD and Ti/Pt as anode materials (CFU: colony-forming units, BDD: boron-doped diamond). This work is also one of the few showing the up-scaling of electrochemical disinfection of real swimming pool water at large volumes of 100 L.  相似文献   

12.
Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10?6) and minimal non-cancer risks (hazard index <1) to adults and children.  相似文献   

13.
• MES was constructed for simultaneous ammonia removal and acetate production. • Energy consumption was different for total nitrogen and ammonia nitrogen removal. • Energy consumption for acetate production was about 0.04 kWh/g. • Nitrate accumulation explained the difference of energy consumption. • Transport of ammonia and acetate across the membrane deteriorated the performance. Microbial electrosynthesis (MES) is an emerging technology for producing chemicals, and coupling MES to anodic waste oxidation can simultaneously increase the competitiveness and allow additional functions to be explored. In this study, MES was used for the simultaneous removal of ammonia from synthetic urine and production of acetate from CO2. Using graphite anode, 83.2%±5.3% ammonia removal and 28.4%±9.9% total nitrogen removal was achieved, with an energy consumption of 1.32 kWh/g N for total nitrogen removal, 0.45 kWh/g N for ammonia nitrogen removal, and 0.044 kWh/g for acetate production. Using boron-doped diamond (BDD) anode, 70.9%±12.1% ammonia removal and 51.5%±11.8% total nitrogen removal was obtained, with an energy consumption of 0.84 kWh/g N for total nitrogen removal, 0.61 kWh/g N for ammonia nitrogen removal, and 0.043 kWh/g for acetate production. A difference in nitrate accumulation explained the difference of total nitrogen removal efficiencies. Transport of ammonia and acetate across the membrane deteriorated the performance of MES. These results are important for the development of novel electricity-driven technologies for chemical production and pollution removal.  相似文献   

14.
In this study, an anaerobic/anoxic/oxic (A2O) wastewater treatment process was implemented to treat domestic wastewater with short-term atrazine addition. The results provided an evaluation on the effects of an accidental pollution on the operation of a wastewater treatment plant (WWTP) in relation to Chemical Oxygen Demand (COD) and biological nutrient removal. Domestic wastewater with atrazine addition in 3 continuous days was treated when steady biological nutrient removal was achieved in the A2O process. The concentrations of atrazine were 15, 10, and 5 mg·L?1 on days 1, 2 and 3, respectively. The results showed that atrazine addition did not affect the removal of COD. The specific NH4 + oxidation rate and NO3 ? reduction rate decreased slightly due to the short-term atrazine addition. However, it did not affect the nitrogen removal due to the high nitrification and denitrification capacity of the system. Total nitrogen (TN) removal was steady, and more than 70% was removed during the period studied. The phosphorus removal rate was not affected by the short-term addition of atrazine under the applied experimental conditions. However, more poly-hydroxy-alkanoate (PHA) was generated and utilized during atrazine addition. The results of the oxygen uptake rate (OUR) showed that the respiration of nitrifiers decreased significantly, while the activity of carbon utilizers had no obvious change with the atrazine addition. Atrazine was not removed with the A2O process, even via absorption by the activated sludge in the process of the short-term addition of atrazine.  相似文献   

15.
Degradation of diuron by the electro-Fenton process   总被引:2,自引:0,他引:2  
The degradation of the herbicide diuron has been undertaken by electrochemical advanced oxidation in aqueous solution. This process generates catalytically hydroxyl radicals that are strong oxidizing reagents for the oxidation of organic substances. Hydroxyl radicals degrade diuron in less than 10 min. Kinetic results evidence a pseudo-first-order degradation, with a rate constant of reaction between diuron and hydroxyl radicals of 4.8x109 M–1 s–1. Several degradation products were identified by chromatography-mass spectrometry (LC-MS). The mineralization degree of a 1.7x10–4 M diuron solution reached 93% at 1,000 coulombs.  相似文献   

16.
Degradation of azo dyes in water by Electro-Fenton process   总被引:19,自引:0,他引:19  
The degradation of the azo dyes azobenzene, p-methyl red and methyl orange in aqueous solution at room temperature has been studied by an advanced electrochemical oxidation process (AEOPs) under potential-controlled electrolysis conditions, using a Pt anode and a carbon felt cathode. The electrochemical production of Fenton's reagent (H2O2, Fe2+) allows a controlled in situ generation of hydroxyl radicals (·OH) by simultaneous reduction of dioxygen and ferrous ions on the carbon felt electrode. In turn, hydroxyl radicals react with azo dyes, thus leading to their mineralization into CO2 and H2O. The chemical composition of the azo dyes and their degradation products during electrolysis were monitored by high performance liquid chromatography (HPLC). The following degradation products were identified: hydroquinone, 1,4-benzoquinone, pyrocatechol, 4-nitrocatechol, 1,3,5-trihydroxynitrobenzene and p-nitrophenol. Degradation of the initial azo dyes was assessed by the measurement of the chemical oxygen demand (COD). Kinetic analysis of these data showed a pseudo-first order degradation reaction for all azo dyes. A pathway of degradation of azo dyes is proposed. Specifically, the degradation of dyes and intermediates proceeds by oxidation of azo bonds and aromatic ring by hydroxyl radicals. The results display the efficiency of the Electro-Fenton process to degrade organic matter. Electronic Publication  相似文献   

17.
吸附反应时间对除草剂阿特拉津吸附行为的影响   总被引:2,自引:0,他引:2  
邓建才  蒋新  胡维平  卢信 《生态环境》2007,16(2):402-406
采用批量动态实验方法,对潮土中阿特拉津吸附特征随吸附反应时间变化进行了研究。结果表明,土壤吸附的阿特拉津量随反应时间的变化符合双曲线函数关系。在50μg·L-1~2000μg·L-1浓度系列下,在48h内,土壤颗粒对阿特拉津的吸附属于快反应,土壤吸附的阿特拉津量随吸附反应时间呈指数上升,为吸附实验结束(168h)时土壤吸附阿特拉津总量的58%到90%。当吸附反应时间超过48h后,随反应时间增加,土壤吸附阿特拉津量差异变化不显著。阿特拉津在潮土颗粒和土壤溶液中的相分配可用Freundlich方程描述。吸附容量因子Kf与吸附反应时间之间有极显著的线性正关系(r2=0.9063**,p<0.0001)。无量纲的非线性因子n与吸附反应时间之间也具有显著的线性负关系(r2=0.5666*,p=0.0192)。  相似文献   

18.
The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h?1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h?1). Compared with Fe(III) solution, the presence of salicylic acid significantly enhanced the formation of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (˙OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.  相似文献   

19.
• A new pulsed switching peroxi-coagulation (PSPC) system was developed. • The ECT for 2,4-D removal in the PSPC was lower than that in the EF. • The iron consumption for 2,4-D removal in the PSPC was lower than that in the PC. The aim of this study was to develop a new pulsed switching peroxi-coagulation system to control hydroxyl radical (?OH) production and to enhance 2,4-Dichlorophenoxyacetic acid (2,4-D) degradation. The system was constructed with a sacrifice iron anode, a Pt anode, and a gas diffusion cathode. Production of H2O2 and Fe2+ was controlled separately by time delayers with different pulsed switching frequencies. Under current densities of 5.0 mA/cm2 (H2O2) and 0.5 mA/cm2 (Fe2+), the ?OH production was optimized with the pulsed switching frequency of 1.0 s (H2O2):0.3 s (Fe2+) and the ratio of H2O2 to Fe2+ molar concentrations of 6.6. Under the optimal condition, 2,4-D with an initial concentration of 500 mg/L was completely removed in the system within 240 min. The energy consumption for the 2,4-D removal in the system was much lower than that in the electro-Fenton process (68±6 vs. 136±10 kWh/kg TOC). The iron consumption in the system was ~20 times as low as that in the peroxi-coagulation process (196±20 vs. 3940±400 mg/L) within 240 min. The system should be a promising peroxi-coagulation method for organic pollutants removal in wastewater.  相似文献   

20.
Removal of atrazine from river waters by indigenous microorganisms   总被引:1,自引:0,他引:1  
We report the first data for atrazine removal in low-turbidity freshwaters. Atrazine is a globally applied herbicide, contamination by which may lead to direct and indirect ecotoxicological impacts. Although a common contaminant of surface waters, microbial biodegradation of atrazine in this environment has been little studied, with most work focused on soils by means of selected, atrazine-degrading bacteria-enriched cultures. Here, we measured atrazine removal from river water using a batch incubation system designed to represent environmental conditions, with water from two contrasting UK rivers, the Tamar and Mersey. Atrazine and bacterial inocula prepared from the source water were added to cleaned river water for 21-day incubations that were analysed directly by electrospray ionisation-mass spectrometry. The experimental approach was validated using peptides of different molecular mass. Results show that atrazine concentrations decreased by 11% over 21 days in Tamar samples, a rural catchment with low population density, when atrazine was the only substrate added. In contrast no removal was evident in Mersey samples, an urban catchment with high population density. When a tripeptide was added as a co-substrate, atrazine removal in the Tamar water remained at 11% while that for the Mersey water increased from 0 to 37%. Although degradation of atrazine in aerobic freshwaters is predicted according to its chemical structure, our data suggest that the composition of the bacterial population determines whether removal occurs under these conditions and at these environmentally realistic concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号