首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil erosion and the global carbon budget   总被引:62,自引:0,他引:62  
Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of conservation-effective measures may reduce the risks of C emission and sequester C in soil and biota.  相似文献   

2.
川中丘陵紫色土区农田土壤有机碳储量及空间分布特征   总被引:1,自引:0,他引:1  
土壤有机碳在陆地生态系统碳循环中起着举足轻重的作用。针对农田区域内典型县域尺度有机碳储量及其空间格局特征的研究,可以为区域农田土壤固碳提供参考,为研究我国土壤有机碳储量提供基础数据支持。基于2012年农田土壤有机碳分析调查数据,结合GIS和GPS技术对川中丘陵区盐亭县土壤有机碳密度和储量及空间格局进行了估算和分析。结果表明:其主要土壤类型的0~20 cm耕层土壤有机碳密度为111~426 kg/m2,平均值为266 kg/m2,水田和旱地耕层土壤有机碳密度分别为345和234 kg/m2,均低于全国平均值;全县20 cm深度土壤有机碳总储量250×109 kg C,紫色土类土壤有机碳储量最大,为153×109kg C,水稻土次之,有机碳储量0.93×109kg C,两者占据了农田土壤有机碳储量约98%,冲积土和黄壤土类由于面积小,有机碳储量也最低。各土壤类型有机碳储量丰度指数(RI)值都较低,碳存储能力处于中下水平。在县域农田尺度,有机碳空间格局与气候差异、植被类型关系不大,土壤类型空间差异和地形差异是有机碳空间格局形成的主要原因。  相似文献   

3.
Carbon (C) sequestration in soils is gaining increasing acceptance as a means of reducing net carbon dioxide (CO2) emissions to the atmosphere. Numerous studies on the global carbon budget suggest that terrestrial ecosystems in the mid-latitudes of the Northern Hemisphere act as a large carbon sink of atmospheric CO2. However, most of the soils of North America, Australia, New Zealand, South Africa and Eastern Europe lost a great part of their organic carbon pool on conversion from natural to agricultural ecosystems during the explosion of pioneer agriculture, and in Western Europe the adoption of modern agriculture after the Second World War led to a drastic reduction in soil organic carbon content. The depletion of organic matter is often indicated as one of the main effects on soil, and the storage of organic carbon in the soil is a means of improve the quality of soils and mitigating the effects of greenhouse gas emission. The soil organic carbon in an area of Northern Italy over the last 70 years has been assessed In this study. The variation of top soil organic carbon (SOC) ranged from −60.3 to +6.7%; the average reduction of SOC, caused by agriculture intensification, was 39.3%. This process was not uniform, but related to trends in land use and agriculture change. For the area studied (1,394 km2) there was an estimated release of 5 Tg CO2-C to the atmosphere from the upper 30 cm of soil in the period 1935–1990.  相似文献   

4.
Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an holistic approach to sustainable management of these ecosystems. The ECBs of RMS ecosystems are not well understood. An ecosystem method of evaluating ECB of RMS ecosystems is proposed.  相似文献   

5.
It has become increasingly well documented that human activities are enhancing the greenhouse effect and altering the global climate. Identifying strategies to mitigate atmospheric carbon dioxide emissions on the national level are therefore critical. Fossil fuel combustion is primarily responsible for the perturbation of the global carbon cycle, although the influence of humans extends far beyond the combustion of fossil fuels. Changes in land use arising from human activities contribute substantially to atmospheric carbon dioxide; however, land use changes can act as a carbon dioxide sink as well. A soil carbon model was built using STELLA to explore how soil organic carbon sequestration (SOC) varies over a range of values for key parameters and to estimate the amount of global soil carbon sequestration from livestock waste. To obtain soil carbon sequestration estimates, model simulations occurred for 11 different livestock types and with data for eight regions around the world. The model predicted that between 1980 and 1995, United States soils were responsible for the sequestration of 444–602 Tg C from livestock waste. Model simulations further predicted that during the same period, global soil carbon sequestration from livestock waste was 2,810–4,218 Tg C. Our estimates for global SOC sequestration are modest in proportion to other terrestrial carbon sinks (i.e. forest regrowth); however, livestock waste does represent a potential for long-term soil carbon gain. SOC generated from livestock waste is another example of how human activities and land use changes are altering soil processes around the world. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

6.
Soil management practices for sustainable agro-ecosystems   总被引:1,自引:0,他引:1  
A doubling of the global food demand projected for the next 50 years poses a huge challenge for the sustainability of both food production and global and local environments. Today’s agricultural technologies may be increasing productivity to meet world food demand, but they may also be threatening agricultural ecosystems. For the global environment, agricultural systems provide both sources and sinks of greenhouse gases (GHGs), which include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). This paper addresses the importance of soil organic carbon (SOC) for agro-ecosystems and GHG uptake and emission in agriculture, especially SOC changes associated with soil management. Soil management strategies have great potential to contribute to carbon sequestration, since the carbon sink capacity of the world’s agricultural and degraded soil is 50–66% of the historic carbon loss of 42–72 Pg (1 Pg=1015 g), although the actual carbon storage in cultivated soil may be smaller if climate changes lead to increasing mineralization. The importance of SOC in agricultural soil is, however, not controversial, as SOC helps to sustain soil fertility and conserve soil and water quality, and organic carbon compounds play a variety of roles in the nutrient, water, and biological cycles. No-tillage practices, cover crop management, and manure application are recommended to enhance SOC storage and to contribute to sustainable food production, which also improves soil quality. SOC sequestration could be increased at the expense of increasing the amount of non-CO2 GHG emissions; however, soil testing, synchronized fertilization techniques, and optimum water control for flooding paddy fields, among other things, can reduce these emissions. Since increasing SOC may also be able to mitigate some local environmental problems, it will be necessary to have integrated soil management practices that are compatible with increasing SOM management and controlling soil residual nutrients. Cover crops would be a critical tool for sustainable soil management because they can scavenge soil residual nitrogen and their ecological functions can be utilized to establish an optimal nitrogen cycle. In addition to developing soil management strategies for sustainable agro-ecosystems, some political and social approaches will be needed, based on a common understanding that soil and agro-ecosystems are essential for a sustainable society.  相似文献   

7.
Three soil carbon models (RothC, CANDY and the Model of Humus Balance) were used to estimate the impacts of climate change on agricultural mineral soil carbon stocks in European Russia and the Ukraine using detailed spatial data on land-use, future land-use, cropping patterns, agricultural management, climate and soil type. Scenarios of climate were derived from the Hadley Centre climate Version 3 (HadCM3) model; future yields were determined using the Soil–Climate–Yield model, and land use was determined from regional agricultural and economic data and a model of agricultural economics. The models suggest that optimal management, which entails the replacement of row crops with other crops, and the use of extra years of grass in the rotation could reduce Soil organic carbon (SOC) loss in the croplands of European Russia and the Ukraine by 30–44% compared to the business-as-usual management. The environmentally sustainable management scenario (SUS), though applied for a limited area within the total region, suggests that much of this optimisation could be realised without damaging profitability for farmers.  相似文献   

8.
上海城市样带土壤有机碳空间变异性研究   总被引:2,自引:0,他引:2  
为揭示城市化、工业化等人为活动对土壤有机碳的影响,选择能反映上海城郊乡梯度差异的城市样带,采用地统计学方法对表层土壤样品土壤有机碳的空间变异结构和分布格局进行了分析。结果表明:城市表层土壤有机碳含量均属中等变异,徐汇区土壤有机碳含量呈正态分布,奉贤区、闵行区和所研究样带土壤有机碳含量呈对数正态分布。半方差函数模型拟合结果显示徐汇和闵行区土壤有机碳符合指数模型,奉贤和所研究样带土壤有机碳符合球状模型。通过泛克里格插值得到城市表层土壤有机碳含量空间分布图,发现徐汇、闵行区土壤有机碳呈岛状,奉贤区呈条带状,而所研究样带呈条带和岛状分布相结合的特点。土壤有机碳含量城郊乡梯度差异明显,工业化、城市化、肥料投入与管理等人为因素对城市土壤有机碳空间分布密切相关  相似文献   

9.
The Model of Humus Balance was used to estimate the influence of climate effects and changing agricultural practices on carbon (C) levels in soddy–podzolic soils in the Russian Federation for the years 2000–2050. The model was linked with a spatial database containing soil, climate and farming management layers for identification of spatial change of C sequestration potential. Analysis of relationships between C, soil texture and climate indicated that compared with a business-as-usual scenario, adaptation measures could increase the number of polygons storing soil organic carbon (SOC) by 2010–2020. The rate of possible C loss is sensitive to the different climate scenarios, with a maximum potential for SOC accumulation expected in 2030–2040, thereafter decreasing to 2050. The effect is most pronounced for the arid part of the study area under the emission scenario with the highest rate of increase in atmospheric CO2 concentration, supporting findings from the dynamic SOC model, RothC. C sequestration during the study period was permanent for clay and clay loam soils with a C content of more than 2%, suggesting that C sequestration should be focused on highly fertile, fine-textured soils. We also show that spatial heterogeneity of soil texture can be a source of uncertainty for estimates of SOC dynamics at the regional scale. Figures in color are available at  相似文献   

10.
上海土壤有机碳储量及其空间分布特征   总被引:2,自引:0,他引:2  
区域土壤碳库的估算不仅是陆地土壤碳循环研究的重要内容,同时也可为国家尺度的土壤碳库的估算提供更多的数据支持。利用上海第二次土壤普查资料,结合GIS技术对上海土壤有机碳储量、碳密度及其空间分布格局展开研究,结果表明,上海地区0~100 cm深度的土壤有机碳总储量为576×107 t,占全国的0.062 6%,0~100 cm的平均土壤有机碳密度为1055 kg/m2,高于全国平均值,反映出上海土壤具有较高的碳蓄积能力。各类土壤中,水稻土的土壤碳储量最大,其次是灰潮土和滨海盐土,而黄棕壤由于面积狭小,所以土壤碳储量最小。各类土壤0~100 cm土壤有机碳密度的大小顺序依次为水稻土>灰潮土>黄棕壤>滨海盐土。从空间分布格局来看,上海土壤碳密度呈现为西高东低,在局部范围内还表现出高低相间,错综复杂的局面,这种分布规律在一定程度上体现了地形、微地貌、母质、土地利用方式等因素的影响。而快速的城市化引起的土地利用变化造成了土壤碳库的净碳损失量为39244万t,相当于2000年化石燃料产生的碳排放的9.86%,这表明在经济和城市快速发展地区,土地利用变化已经成为影响土壤碳库的重要驱动力。  相似文献   

11.
The effect of fire on soil organic matter--a review   总被引:22,自引:0,他引:22  
The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.  相似文献   

12.
The study was conducted to assess the potential of Norwegian agricultural ecosystems to sequester carbon (C) based on the data from some long-term agronomic and land use experiments. The total emission of CO2 in Norway in 1998 was 41.4 million metric ton (MMT), of which agriculture contributed only 0.157 MMT, or <0.4% of the total emissions. With regards to methane (CH4) and nitrous oxide (N2O) gases, however, agricultural activities contributed 32.5% and 51.3% of their respective emissions in Norway. The soil organic carbon (SOC) losses associated with accelerated soil erosion in Norway are estimated at 0.475 MMTC yr–1. Land use changes and soil/crop management practices with potential for SOC sequestration include conservation tillage methods, judicious use of fertilizers and manures, use of crop residues, diverse crop rotations, and erosion control measures. The potential for SOC sequestration is 0.146 MMTC yr–1 for adopting conservation tillage, 0.011–0.035 MMTC yr–1 for crop residue management, 0.026 MMTC yr–1 for judicious use of mineral fertilizer, 0.016–0.135 MMTC yr–1 for manure application, and 0.036 MMTC yr–1 for adopting crop rotations. The overall potential of these practices for SOC sequestration ranges from 0.591 to 1.022 MMTC yr–1 with an average value of 0.806 MMTC yr–1. Of the total potential, 59% is due to adoption of erosion control measures, 5.8% to restoration of peat lands, 21% to conversion to conservation tillage and residue management, and 14% to adoption of improved cropping systems. Enhancing SOC sequestration and improving soil quality, through adoption of judicious land use and improved system of soil and crop management, are prudent strategies for sustainable management of soil, water and environment resources.Readers should send their comments on this paper to: bhaskarn ath@aol.com within 3 months of publication of this issue.  相似文献   

13.
Accelerated erosion and soil degradation currently cause serious problems to the Oued El Maleh basin (Morocco). Furthermore, there is still only limited information on rates of soil loss for optimising strategies for soil conservation.In the present study we have used the (137)Cs technique to assess the soil erosion rates on an agricultural land in Oued el Maleh basin near Casablanca (Morocco). A small representative agricultural field was selected to investigate the soil degradation required by soil managers in this region. The transect approach was applied for sampling to identify the spatial redistribution of (137)Cs. The spatial variability of (137)Cs inventory has provided evidence of the importance of tillage process and the human effects on the redistribution of (137)Cs. The mean (137)Cs inventory was found about 842 Bq m(-2), this value corresponds to an erosion rate of 82 tha(-1) yr(-1) by applying simplified mass balance model in a preliminary estimation. When data on site characteristics were available, the refined mass balance model was applied to highlight the contribution of tillage effect in soil redistribution. The erosion rate was estimated about 50 tha(-1) yr(-1). The aspects related to the sampling procedures and the models for calculation of erosion rates are discussed.  相似文献   

14.
Environment, Development and Sustainability - The objectives of this study across the highlands of Ethiopia were: (i) to characterize the association between soil organic carbon (SOC) stocks and...  相似文献   

15.
Land use changes represent one of the most important components of global environmental change and have a strong influence on carbon cycling. As a consequence of changes in economy during the last century, areas of marginal agriculture have been abandoned leading to secondary successions. The encroachment of woody plants into grasslands, pastures and croplands is generally thought to increase the carbon stored in these ecosystems even though there are evidences for a decrease in soil carbon stocks after land use change. In this paper, we investigate the effects of woody plant invasion on soil carbon and nitrogen stocks along a precipitation gradient (200?C2,500?mm) using original data from paired experiment in Italian Alps and Sicily and data from literature (Guo and Gifford Glob Change Biol 8(4):345?C360, 2002). We found a clear negative relationship (?0.05%?C?mm?1) between changes in soil organic carbon and precipitation explaining 70% of the variation in soil C stocks after recolonization: dry sites gain carbon (up to +67%) while wet sites lose carbon (up to ?45%). In our data set, there seem to be two threshold values for soil carbon accumulation: the first one is 900?mm of mean annual rainfall, which separates the negative from the positive ratio values; the second one is 750?mm, which divides the positive values in two groups of sites. Most interestingly, this threshold of 750?mm corresponds exactly to a bioclimatic threshold: sites with <750?mm mean annual rainfall is classified as thermo-mediterranean sites, while the ones >750?mm are classified as mesomediterranean sites. This suggests that apart from rainfall also temperature values have an important influence on soil carbon accumulation after abandonment. Moreover, our results confirmed that the correlation between rainfall and trend in soil organic carbon may be related to nitrogen dynamics: carbon losses may occur only if there is a substantial decrease in soil nitrogen stock which occurs in wetter sites probably because of the higher leaching.  相似文献   

16.
Negative effects of land use change on water resources are among the most important environmental problems widely found in rapidly developing urban areas. Preserving green open spaces, including peri-urban agriculture, has been emphasized in urban planning to maintain or enhance the water catchment capacity of a landscape. However, the effect of agriculture on water-related landscape functions varies depending on the type, distribution, and management of farmland. This paper analyzes the dynamics of agricultural land and its effect on runoff and soil erosion, in order to support agricultural land management in Jabodetabek Metropolitan Area (JMA) with Indonesia’s capital Jakarta at its core. In 2012, agricultural land in JMA covered 53% of the total area, mostly located in the peri-urban zone. Peak Flow and Universal Soil Loss Equation (USLE) models were used to quantify the increase of runoff and soil erosion in the three most important water catchment areas in JMA caused by an expansion of dryland agriculture and mixed gardens from 1983 to 2012. Critical zones, which generate most of the runoff and soil erosion, were identified in each of the catchment areas. While reforestation of farmland in these zones will be only an option on steep slopes given the great food demands and rural livelihood, adoption of soil and water conservation practices can make a substantial contribution to reduce flood risks and conserve the productivity of agricultural land. A specific set of policy incentives is recommended considering agricultural land use types distribution and their impact on runoff and soil erosion.  相似文献   

17.
The soil characteristics are critical for crop health and its yield and therefore for agriculture. The soil properties are spatially variable and therefore soil resources should be managed as per location-specific requirements. An integrated spatial analysis of the soil resources of Mewat district was conducted to identify the soil resource management zones to develop site-specific soil management plan which might lead to sustained and enhanced crop yield. Spatial analysis of soil resources was conducted by modeling soil fertility and erosion which determines the crop productivity in the region. Soil fertility of the region was modeled using weighted overlay approach using 10 soil parameters, namely nitrogen, phosphorus, potassium, sulfur, iron, zinc, manganese, organic carbon, electrical conductivity, and pH. Each parameter was assigned weights based on their relative importance to agricultural productivity. The modeled soil fertility was classified into three fertility zones, low, medium, and high. Soil fertility was found to be low to moderate in 65% of the area, largely because of the low nitrogen, soil organic carbon, phosphorus concentration, and excessive salinity. Soil erosion was modeled using the universal soil loss equation (USLE) model by estimating rainfall erosivity factor (R), the soil erodibility factor (K), the topographic factors (L and S), cropping factor (C), and the conservation practice factor (P). Soil erosion problems were limited to areas having high elevation with barren land and areas with minimal management practices. The severity of soil erosion was found high in 15% of the region, while the remaining 85% showed low to moderate erosion. Soil fertility and erosion were integrated using the multivariate clustering method to identify soil management zones. The region was delineated into three soil management zones. Zone I (29%) which covers majorly Tarou block, was characterized by high soil fertility and low soil erosion. Zone II (18%) with medium soil fertility and high erosion covers villages of Taoru, Nuh, Nagina, FP Jhirka, and Punhana, which are located in the foothills of Aravalli ranges. Zone III represents the major part of the region, covering Nuh, Nagina, and FP Jhirka blocks (54%) with low soil fertility and erosion conditions. Thus, within the study area, the soil management domains are spatially variable in terms of fertility and soil erosion, and thus zone-specific soil management measures are required to improve the soil condition in order to sustain and improve agriculture production. The study would help the policy makers to design site-specific planning for identified soil resource management zones.  相似文献   

18.
不同水土保持林地土壤有机碳研究   总被引:6,自引:0,他引:6  
研究了重庆四面山低山丘陵区不同水土保持林地0~20、20~40 和40~60 cm的土壤有机碳含量及不同深度的土壤有机碳密度。结果表明:0~20、20~40 和40~60 cm土层中土壤有机碳含量的平均值分别为3309、751和321 g/kg;0~20 cm的土壤有机碳密度介于497~1431 kg/m2,而0~60 cm的土壤有机碳密度介于784~1794 kg/m2,均值为1278 kg/m2;土壤有机碳含量和有机碳密度随土壤深度增加而显著减少,但其减少程度随水土保持林树种组成不同而异;不同水土保持林地60 cm深度的土壤有机碳密度存在显著差异,表现为:天然次生林>人工林>农耕地,其中,天然阔叶混交林土壤有机碳密度最大,为1794 kg/m2,农耕地的最小,仅为784 kg/m2。人工水土保持林中,阔叶混交林的土壤有机碳密度最大。从增加土壤碳的角度,建议营造阔叶混交林  相似文献   

19.
Li  Man  Wu  JunJie  Deng  Xiangzheng 《Regional Environmental Change》2016,16(8):2429-2441
Regional Environmental Change - This paper estimates the impact of land use change on soil organic carbon (SOC) sequestration in China from 1985 to 2005 using a nationwide, georeferenced database...  相似文献   

20.
Soil erosion is considered as a serious threat to agricultural development in developing countries. Soil and water conservation measures, such as terraces, are often promoted to combat soil erosion and to increase agricultural production. In this paper, the short-term impact of bench terraces, 2–4 years after their establishment, on soil properties and maize yield in the Peruvian Andes is analysed and discussed. The results show that bench terraces did not result in any short term change in soil properties, such as fertility or infiltration capacity. Nevertheless, the bench terraces resulted in 20% higher yields, due to a higher planting density, compared with adjacent sloping fields. However, this increase in yield was nullified by the loss of area occupied by the bench terraces. Bench terraces should therefore be accompanied with other measures to intensify agriculture, such as irrigation or cash crops, to improve the profitability and uptake of bench terraces in the Andes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号