首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In many social insects, including bumblebees, the division of labor between workers relates to body size, but little is known about the factors influencing larval development and final size. We confirmed and extend the evidence that in the bumblebee Bombus terrestris the adult bee body size is positively correlated with colony age. We next performed cross-fostering experiments in which eggs were switched between incipient (before worker emergence) and later stage colonies with workers. The introduced eggs developed into adults similar in size to their unrelated nestmates and not to their same-age full sisters developing in their mother colony. Detailed observations revealed that brood tending by the queen decreases, but does not cease, in young colonies with workers. We next showed that both worker number and the queen presence influenced the final size of the developing brood, but only the queen influence was mediated by shortening developmental time. In colonies separated by a queen excluder, brood developmental time was shorter in the queenright compartment. These findings suggest that differences in body size are regulated by the brood interactions with the queen and workers, and not by factors inside the eggs that could vary along with colony development. Finally, we developed a model showing that the typical increase in worker number and the decrease in brood contact with the queen can account for the typical increase in body size. Similar self-organized social regulation of brood development may contribute to the optimization of growth and reproduction in additional social insects.  相似文献   

2.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

3.
In several ant species, colonies are founded by small groups of queens (pleometrosis), which coexist until the first workers eclose, after which all but one queen is killed. It has been hypothesized that, by producing a larger cohort of workers, cooperating queens may increase colony success during brood raids, a form of competition in which brood and workers from losing nests are absorbed into winning colonies. To test whether this benefit is sufficient to favor pleometrosis, newly mated queens of the fire ant Solenopsis invicta were assembled in groups of one, two, three, or four, reared in the laboratory until the first workers eclosed, then planted in the field in replicated assemblages. The proportion of colonies engaging in brood raids increased with average foundress number per nest and with colony density but was unaffected by variance in foundress number among interacting colonies. Within mixed assemblages of single-queen and multiple-queen colonies, queen number had no effect on the likelihood of engaging in raids or the probability of nest survival through the brood raiding period. However, following nearly 30% of raids, queens moved to new nests and displaced the resident queens. When queen relocation and subsequent mortality were accounted for, it was found that the survival of queens from four-queen groups was substantially higher than that of solitary queens. By contrast, the survival of queens from two-queen colonies was no greater than that of solitary queens. These results show that the competitive advantages of multiple-queen colonies are sufficient to counterbalance the increased mortality of queens within groups only when the number of foundresses is greater than two and when colonies are founded at high density. When colonies lose brood raids, the workers appear to abandon their mothers to join surviving colonies. However, in laboratory experiments, queens attempting to enter foreign nests were significantly more likely to displace the resident queen if their own daughters were present within the invaded nest. Thus, workers may be able to bias the probability that their mother rejoins them and displaces competing queens.  相似文献   

4.
Wild bumblebee colonies are hard to find and often inaccessible, so there have been few studies of the genetic structure of bumblebees within natural colonies, and hence, it is not clear how frequently events such as worker reproduction, worker drift and queen usurpation take place. This study aimed to quantify the occurrence of natal-worker reproduction, worker drift and drifter reproduction within 14 wild colonies of Bombus terrestris in Central Scotland. Four unlinked microsatellites were used to identify patterns of relatedness of the colonies’ adults and broods. In colonies with queens (queenright colonies), worker reproduction accounted for just 0.83 % of males, increasing to 12.11 % in queenless colonies. Four colonies contained a total of six workers which were not daughters of the queen, and were assumed to be drifters, and four male offspring of drifters. Drifting is clearly not common and results in few drifter offspring overall, although drifters produced approximately seven times more offspring per capita than workers that remained in their natal colony. Unexpectedly, two colonies contained clusters of sister workers and juvenile offspring that were not sisters to the rest of the adults or brood found in the colonies, demonstrating probable egg dumping by queens. A third colony contained a queen which was not a sister or daughter to the other bees in the colony. Although usurping of bumblebee colonies by queens in early season is well documented, this appears to be the first record of egg dumping, and it remains unclear whether it is being carried out by old queens or newly mated young queens.  相似文献   

5.
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h 2=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.  相似文献   

6.
Fire ant polymorphism: the ergonomics of brood production   总被引:3,自引:0,他引:3  
Summary Social organization is generally assumed to increase colony efficiency and survival; however, little quantitative information is available to support this assumption. Polymorphism is an important aspect of labor division in colonies of the fire ant, Solenopsis invicta. Our objective was to investigate the effect of fire ant polymorphism on brood production efficiency. We set up standardized polymorphic colonies with a full range of worker sizes and artificial monomorphic colonies that contained only small, medium or large workers respectively. Polymorphic colonies produced brood at about the same rate as colonies composed of only small workers (Fig. 2A). Colonies composed of only medium workers produced about 30% less brood, and colonies composed of only large workers produced little or no brood at all. This pattern was independent of colony size; however, smaller colonies (0.75 g, live weight) produced almost twice as much brood per gram of workers as larger colonies (3.0g). Additional experiments revealed that the size of workers in the artificial monomorphic colonies affected all stages of brood rearing. Large workers not only inhibited the development of early and late instar larvae (Fig 4), but also reduced the queen's oviposition rate (Fig. 3). Brood production efficiency on an energetic basis was determined by dividing the grams of brood produced per unit time by the energetic costs expended for the maintenance and production of each worker size class. Worker maintenance costs were estimated from respiration while production costs were determined from the caloric content of worker tissue divided by their average longevity. Worker respiration per milligram body weight decreased about 40% as body size increased (Fig. 5). Large workers lived about 50% longer than small workers (Fig. 6) and contained 9% more energy per milligram of tissue (Fig. 7). Energetic efficiency in polymorphic colonies was approximately 10% higher than in colonies composed of only small workers (Fig. 9). In other words, when food supplies are limiting, polymorphism may offer a slight advantage in brood production.  相似文献   

7.
Workers of a queenless honeybee colony can requeen the colony by raising a new queen from a young worker brood laid by the old queen. If this process fails, the colony becomes hopelessly queenless and workers activate their ovaries to lay eggs themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce female offspring as an additional pathway for requeening. We tested the frequency of successful requeening in ten hopelessly queenless colonies. DNA genotyping revealed that only 8% of all queens reared in hopelessly queenless colonies were the offspring of native laying worker offspring. The vast majority of queens resulted from parasitic takeovers by foreign queens (27%) and invading parasitic workers (19%). This shows that hopelessly queenless colonies typically die due to parasitic takeovers and that the parasitic laying workers are an important life history strategy more frequently used than in providing a native queen to rescue the colony. Parasitism by foreign queens, which might enter colonies alone or accompanied by only a small worker force is much more frequent than previously considered and constitutes an additional life history strategy in Cape honeybees.  相似文献   

8.
We investigated sex allocation in a central European population of the facultatively polygynous ant Leptothorax acervorum. The population-wide sex ratio was found to be quite balanced, with a proportional investment in female sexuals of 0.49. Sex allocation varied considerably between colonies, resulting in split sex ratios. The productivity of colonies was negatively correlated with queen number and positively with colony size. In contrast, the sex ratio (proportional investment in female sexuals) was neither correlated with queen number, colony size, nor total sexual production, but with worker relatedness. The uncoupling of the genetic colony structure and queen number presumably results from frequent queen turnover and colony splitting.  相似文献   

9.
Many hypotheses attempt to explain why queens of social insects mate multiply. We tested the sex locus hypothesis for the evolution of polyandry in honey bees (Apis mellifera). A queen may produce infertile, diploid males that reduce the viability of worker brood and, presumably, adversely affect colony fitness. Polyandry reduces the variance in diploid male production within a colony and may increase queen fitness if there are non-linear costs associated with brood viability, specifically if the relationship between brood viability and colony fitness is concave. We instrumentally inseminated queens with three of their own brothers to vary brood viability from 50% to 100% among colonies. We measured the colonies during three stages of their development: (1) colony initiation and growth, (2) winter survival, and (3) spring reproduction. We found significant relationships between brood viability and most colony measures during the growth phase of colonies, but the data were too variable to distinguish significant non-linear effects. However, there was a significant step function of brood viability on winter survival, such that all colonies above 72% brood viability survived the winter but only 37.5% of the colonies below 72% viability survived. We discuss the significance of this and other "genetic diversity" hypotheses for the evolution of polyandry.  相似文献   

10.
Queen and worker Bombus terrestris have different optima for the timing of gyne production. Workers, being more related to their gyne-sisters than to their sons, should ascertain that gyne production has started before attempting to reproduce. Their optimal timing for gyne production will be as early as possible, while allowing sufficient ergonomic colony growth to support gyne rearing. Queen optimum, on the other hand, should be to postpone gyne production toward the end of colony life cycle, in order to minimize the time-window available for worker reproduction. Thus, the timing of gyne production may profoundly affect the outcome of queen–worker competition over male production. In this study we investigated some of the social correlates possibly affecting this timing. It was found that neither keeping colony size constant and as low as 20 workers, nor decreasing worker average age, influenced the onset of gyne production. To test the effect of queen age we created young colonies with old queens and vice versa. When colony social composition remained unchanged, in young colonies headed by old queens gynes were produced earlier than predicted, but in the inverse situation gyne production was not delayed. When colony social composition was completely standardized queen age had a decisive effect, indicating that the timing of gyne production is both under queen influence and affected by queen age. Furthermore, queens assess colony age from the time of first worker emergence rather than from their own first oviposition. In these experiments the factors affecting gyne production also affected the onset of queen–worker conflict for male production, suggesting that both are regulated by the same causal effect. Postponing gyne production as much as possible provides another mechanism, in addition to extensive oophagy, for the queen to outcompete her workers in male production.  相似文献   

11.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

12.
Summary The study investigates whether worker policing via the selective removal of worker-laid male eggs occurs in normal honey bee colonies with a queen. Queenright honey bee colonies were set up with the queen below a queen excluder. Frames of worker brood and drone comb were placed above the queen excluder. Daily inspections of the drone frames revealed the presence of a few eggs, presumably laid by workers, at a rate of 1 egg per 16000 drone cells. 85% of these eggs were removed within 1 day and only 2% hatched. Dissections of workers revealed that about 1 worker in 10000 had a fully developed egg in her body. These data show that worker egg-laying and worker policing are both normal, though rare, in queenright honey bee colonies, and provide further confirmation of the worker policing hypothesis.  相似文献   

13.
Behavior in eusocial insects likely reflects a long history of selection imposed by parasites and pathogens because the conditions of group living often favor the transmission of infection among nestmates. Yet, relatively few studies have quantified the effects of parasites on both the level of individual colony members and of colony success, making it difficult to assess the relative importance of different parasites to the behavioral ecology of their social insect hosts. Colonies of Polybia occidentalis, a Neotropical social wasp, are commonly infected by gregarines (Phylum Apicomplexa; Order Eugregarinida) during the wet season in Guanacaste, Costa Rica. To determine the effect of gregarine infection on individual workers in P. occidentalis, we measured foraging rates of marked wasps from colonies comprising both infected and uninfected individuals. To assess the effect of gregarines on colony success, we measured productivity and adult mortality rates in colonies with different levels of infection prevalence (proportion of adults infected). Foraging rates in marked individuals were negatively correlated with the intensity of gregarine infection. Infected colonies with high gregarine prevalence constructed nests with fewer brood cells per capita, produced less brood biomass per capita, and, surprisingly, experienced lower adult mortality rates than did uninfected or lightly infected colonies. These data strongly suggest that gregarine infection lowers foraging rates, thus reducing risk to foragers and, consequently, reducing adult mortality rates, while at the same time lowering per-capita input of materials and colony productivity. In infected colonies, queen populations were infected with a lower prevalence than were workers. Intra-colony infection prevalence decreased dramatically in the P. occidentalis population during the wet season.An erratum to this article can be found at  相似文献   

14.
Worker sterility in the bumblebee Bombus terrestris is conditional and is linked to the social development of the colony. Workers refrain from reproducing or overtly challenging the queen until gyne production has initiated, at the so-called competition point (CP). It is not known whether this behavior is hard-wired or workers show reproductive plasticity. It also remains unclear whether worker reproductive decision is under queen and/or worker control. In this study, we tested worker reproductive plasticity in an attempt to assess whether and under which conditions worker sterility/fertility are reversible. We introduced egg-laying workers into colonies with different social structures for 1 week then monitored their reproductive status. We revealed a remarkable reproductive plasticity in the introduced workers that was social-condition-dependent. In the presence of a pre-CP queen, the introduced workers reverted to sterility, whereas in the presence of a post-CP queen, such workers remained egg-layer. Reversion to sterility does not occur when direct contact with the queen is prevented, as the introduced workers remained egg-layer in the queenright colonies with a confined queen. Egg-laying workers that were introduced into queenless colonies mostly maintained their fertility regardless of colony social phase. This shows that worker transition from cooperative to selfish behavior is reversible depending on the social context.  相似文献   

15.
Testing the limits of social resilience in ant colonies   总被引:4,自引:0,他引:4  
Social resilience is the ability of Leptothorax ant colonies to re-assemble after dissociation, as caused, for example, by an emigration to a new nest site. Through social resilience individual workers re-adopt their spatial positions relative to one another and resume their tasks without any time being wasted in worker respecialisation. Social resilience can explain how an efficient division of labour can be maintained throughout the trials and tribulations of colony ontogeny including the, often substantial, period after the queen dies when the ability to conserve worker social relationships may be essential for efficiency to be maintained. The mechanism underlying social resilience is, therefore, expected to be robust even in the absence of many of the colony’s components, such as the queen, the brood and even a large proportion of the workers. Such losses are likely, given the ecology of this genus. Using sociotomy experiments, we found that social resilience can occur in the absence of the queen. Furthermore, the spatial component of social resilience can occur even when the queen, the brood, as well as a large proportion of the workers, are all absent simultaneously and hence many of the tasks are missing. We conclude, therefore, that social resilience is indeed robust. This does not, however, preclude worker flexibility in response to changes in task supply and demand. We propose a possible sorting mechanism based on worker mobility levels which might explain the robustness underlying this phenomenon. Received: 25 October 1999 / Accepted: 1 April 2000  相似文献   

16.
Genetic diversity might increase the performance of social groups by improving task efficiency or disease resistance, but direct experimental tests of these hypotheses are rare. We manipulated the level of genetic diversity in colonies of the Argentine ant Linepithema humile, and then recorded the short-term task efficiency of these experimental colonies. The efficiency of low and high genetic diversity colonies did not differ significantly for any of the following tasks: exploring a new territory, foraging, moving to a new nest site, or removing corpses. The tests were powerful enough to detect large effects, but may have failed to detect small differences. Indeed, observed effect sizes were generally small, except for the time to create a trail during nest emigration. In addition, genetic diversity had no statistically significant impact on the number of workers, males and females produced by the colony, but these tests had low power. Higher genetic diversity also did not result in lower variance in task efficiency and productivity. In contrast to genetic diversity, colony size was positively correlated with the efficiency at performing most tasks and with colony productivity. Altogether, these results suggest that genetic diversity does not strongly improve short-term task efficiency in L. humile, but that worker number is a key factor determining the success of this invasive species.Communicated by L. Sundström  相似文献   

17.
Social parasites exploit their host’s communication system to usurp resources and reproduce. In the honeybee, Apis mellifera, worker reproduction is regulated by pheromones produced by the queen and the brood. Workers usually reproduce when the queen is removed and young brood is absent. However, Cape honeybee workers, Apis mellifera capensis, are facultative intraspecific social parasites and can take over reproduction from the host queen. Investigating the manner in which parasitic workers compete with host queens pheromonally can help us to understand how such parasitism can evolve and how reproductive division of labour is regulated. In A. m. capensis, worker reproduction is associated with the production of queen-like pheromones. Using pheromonal contest experiments, we show that Apis mellifera scutellata queens do not prevent the production of queen-like mandibular gland compounds by the parasites. Given the importance of these pheromones in acquiring reproductive status, our data suggest that the single invasive lineage of parasitic workers occurring in the range of A. m. scutellata was selected for its superior ability to produce these signals despite the presence of a queen. Such resistance was indeed less frequent amongst other potentially parasitic lineages. Resistance to reproductive regulation by host queens is probably the key factor that facilitates the evolution of social parasitism by A. m. capensis workers. It constitutes a mechanism that allows workers to evade reproductive division of labour and to follow an alternative reproductive option by acquiring direct fitness in foreign colonies instead of inclusive fitness in their natal nests.  相似文献   

18.
Colonies of social insects are sometimes viewed as superorganisms. The birth, reproduction, and death of colonies can be studied with demographic measures analogous to those normally applied to individuals, but two additional questions arise. First, how do adaptive colony demographies arise from individual behaviors? Second, since these superorganisms are made up of genetically distinct individuals, do conflicts within the colony sometimes modify and upset optima for colonies? The interplay between individual and superindividual or colony interests appears to be particularly complex in neotropical, swarm-founding, epiponine wasps such as Parachartergus colobopterus. In a long-term study of this species, we censused 286 nests to study colony-level reproduction and survivorship and evaluated individual-level factors by assessing genetic relatedness and queen production. Colony survivorship followed a negative exponential curve very closely, indicating type II survivorship. This pattern is defined by constant mortality across ages and is more characteristic of birds and other vertebrates than of insects. Individual colonies are long-lived, lasting an average of 347 days, with a maximum of over 4.5 years. The low and constant levels of colony mortality arise in part from colony initiation by swarming, nesting on protected substrates, and an unusual expandable nest structure. The ability to requeen rapidly was also important; relatedness data suggest that colonies requeen on average once every 9–12 months. We studied whether colony optima with respect to the timing of reproduction could be upset by individual worker interests. In this species, colonies are normally polygynous but new queens are produced only after a colony reaches the monogynous state, a result which is in accord with the genetic interests of workers. Therefore colony worker interests might drive colonies to reproduce whenever queen number happens to cycled down to one rather than at the season that is otherwise optimal. However, we found reproduction to be heavily concentrated in the rainy season. The number of new colonies peaked in this season as did the percentages of males and queens. Relatedness among workers reached a seasonal low of 0.21–0.27, reflecting the higher numbers of laying queens. This seasonality was achieved in part by a modest degree of synchrony in the queen reduction cycle. Worker relatedness reached peaks of around 0.4 in the dry season, reflecting a decrease to a harmonic mean queen number of about 2.5. Thus, a significant number of colonies must be approaching monogyny entering the rainy season. Coupled with polygynous colonies rearing only males (split sex ratios), this makes it possible for a colony cycle driven by selfish worker interests to be consistent with concentrating colony reproduction during a favorable season.  相似文献   

19.
The genetic basis of morphological traits in social insects remains largely unexplored. This is even true for individual body size, a key life-history trait. In the social insects, the size of reproductive individuals affects dispersal decisions, so that small size in queens is often associated with reduced dispersal, and large size with long-range dispersal and independent colony founding. Worker size is connected to division of labour when workers specialize in certain tasks according to their size. In many species, variation in worker size has been shown to increase colony performance. In this study, we present the first evidence of an additive genetic component to queen size in ants, using maternal half sib analysis. We also compared intra-colony size variation in colonies with high (queen doubly mated) versus low (queen singly mated) genetic variability. We found a high and significant heritability (h2=0.51) for queen size in one of the two study years, but not in the other. Size variation among queens was greater in colonies headed by a doubly mated queen in one of the study years, but not in the other. This indicates that genetic factors can influence queen size, but that environmental factors may override these under some circumstances. The heritability for worker size was low (h2=0.09) and non-significant. Increased genetic diversity did not increase worker size variation in the colonies. Worker size appeared largely environmentally determined, potentially allowing colonies to adjust worker size ratios to current conditions.Communicated by J. Heinze  相似文献   

20.
Honey-bees, Apis, are an important model system for investigating the evolution and maintenance of worker sterility. The queen is the main reproductive in a colony. Workers cannot mate, but they can lay unfertilized eggs, which develop into males if reared. Worker reproduction, while common in queenless colonies, is rare in queenright colonies, despite the fact that workers are more related to their own sons than to those of the queen. Evidence that worker sterility is enforced by 'worker policing' is reviewed and worker policing is shown to be widespread in Apis. We then discuss a rare behavioural syndrome, 'anarchy', in which substantial worker production of males occurs in queenright colonies. The level of worker reproduction in these anarchic colonies is far greater than in a normal queenright honey-bee colony. Anarchy is a counterstrategy against worker policing and an example of a 'cheating' strategy invading a cooperative system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号