首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在对环境细颗粒物进行治理的过程中,一些地区随着PM_(2.5)下降而出现O_3浓度增加的现象。分析两者的变化规律和影响因素,对云贵高原大气PM_(2.5)和O_3治理具有参考意义。利用贵阳2013—2017年PM_(2.5)与O_3监测数据及太阳辐射、温度等气象观测资料,采用对比观测方法分析大气复合污染中PM_(2.5)和O_3在不同季节相互作用的机理和变化特征。结果表明:不同气象条件下,PM_(2.5)和O_3的相互作用表现为:夏季,高浓度的O_3在较强的大气氧化条件下可促进二次颗粒物形成,增加环境中PM_(2.5)的浓度水平,两者表现为正相关(r=0.609,P0.01);冬季,较高浓度的PM_(2.5)削弱了太阳辐射,同时抑制O_3的产生,两者表现为负相关(r=-0.373,P0.01)。PM_(2.5)与O_3在不同季节的相互作用机理受温度和太阳辐射等气象因素影响,夏季光化学反应速率较高,O_3二次生成浓度相对较高,且多种污染物共存;冬季,采暖期细粒子排放增加,大气层结稳定促使PM_(2.5)在大气中累积,导致气溶胶光学厚度增大,削弱了到达地面的太阳辐射,加之贵阳冬季太阳辐射只相当于夏季的2/5,抑制了生成O_3的光化学反应,空气污染以PM_(2.5)为主。综上,贵阳大气复合污染的季节变化可由大气环境中PM_(2.5)和O_3的季节性相互作用决定。  相似文献   

2.
随着社会经济的迅速发展、城市化进程的不断加快以及能源消费需求的增加,广东省大气污染问题日益成为人们关注的重要环境污染问题之一。为了进一步了解广东省主要大气污染物质量浓度的时空变化情况,以广东省21个地级市为研究对象,选用广东省生态环境厅历年发布的环境状况公报以及《环境空气质量标准》(GB3095-2012)中的SO_2、NO_2、PM_(10)、PM_(2.5)、O_3~(-8) h,以及CO 24h平均第95%位数的质量浓度作为评价因子,基于ArcGIS 10.2软件分析平台,分析了广东省主要大气污染物的年际变化特征、空间分布特征及其变化原因。结果表明,1998—2017年间,广东省降水pH年均值由1998年的4.71提高到2017年的5.14,且大多年份维持在5.0-5.6之间,酸雨发生频率均属轻酸雨。除少数年份外,全省SO_2、NO_2、PM_(10)、PM_(2.5)、O_3~(-8)h和CO平均质量浓度均达到国家二级标准。空间分布上,全省大气主要污染物除NO_2上升,O_3~(-8)h波动变化外,SO2、PM10、PM2.5和CO的质量浓度均呈现下降趋势。近年来,珠三角地区的大气环境首要污染物主要为O_3~(-8)h,其次为PM_(2.5)和NO_2,粤东西北地区除O_3~(-8)h和PM2.5污染较重外,PM_(10)的污染也较为严重。总的来看,研究期间,广东大气环境质量逐年得到改善,主要原因在于全省在社会经济快速发展的同时,也加大了大气环境污染防治工作力度,取得了显著成效。  相似文献   

3.
本文利用呼和浩特市8个国控监测点中CO、NO_2、SO_2、O_3、PM_(10)和PM_(2.5)逐时地面观测数据资料,采用聚类分析、相关性分析等方法,综合研究呼和浩特市城区大气污染物浓度时空变化特征.结果表明,2017年呼市PM_(10)、PM_(2.5)和O_3的污染较为严重,超标天数分别为49 d、52 d和41 d;CO和SO_2整体污染较轻.CO、NO_2、SO_2以及PM_(2.5)浓度表现出冬高夏低变化,O_3表现出夏高冬低变化,PM_(10)则表现为春冬高而夏秋低.O_3和NO_2均呈现单峰型日变化特征,且变化趋势相反;CO、SO_2和PM_(2.5)都呈现出相似的双峰型日变化.小召和工大金川校区监测点污染整体较为严重,小召监测点主要污染物为PM_(2.5)和PM_(10),工大金川校区主要污染物为SO_2.相关性分析表明,O_3浓度与气温呈显著正相关;PM_(2.5)与湿度呈显著正相关;CO、NO_2和SO_2均与风速呈显著负相关;PM_(10)与各气象要素在不同的季节相关性不同.  相似文献   

4.
太阳辐射是天气气候形成和演变的基本动力,也直接影响着近地层的空气质量,研究太阳辐射变化对空气质量的影响规律具有重要意义。基于2007-2018年福州市太阳总辐射、PM-(10)及2014-2018年PM_(2.5)、O_3观测资料,采用趋势分析、相关分析、对比分析等方法,研究福州市太阳总辐射的时间分布规律、变化特征及与PM、O_3的相关关系。结果表明,(1)近12a福州市太阳年总辐射呈上升趋势,平均上升率为6.7%/10a,ρ(PM_(10))和ρ(PM_(2.5))年平均值呈现明显下降趋势,太阳年总辐射与ρ(PM)呈负相关关系。(2)福州市太阳总辐射7月最强、12月最弱,平均而言夏季(7-9月)太阳总辐射量最丰富,春季次之,冬季最少。(3)太阳日总辐射与ρ(O_3)日均值、ρ(O_3)–max–8h、IAQI(ρ(O_3))呈现明显的正相关关系,相关系数分别为0.452、0.594、0.572,通过0.01显著性检验。(4)随着大气中ρ(PM)逐年降低,太阳总辐射量增加,又引起了O_3污染日趋严重的问题,2017-2018年福州市O_3污染明显加重,这与太阳辐射增强、气温异常偏高,日照时数明显偏多关系密切。(5)利用AQI(空气质量指数)评价空气质量后,太阳总辐射对空气质量从单一的影响ρ(PM)高低到主要影响ρ(PM)和ρ(O_3)高低转变。研究结果揭示了《环境空气质量标准》(GB3095-2012)执行后,太阳总辐射与空气质量的相关关系取决于当天的首要污染物,进而决定并影响空气质量的好坏。  相似文献   

5.
利用2016—2020年上海市PM_(10)、PM_(2.5)、SO_2、NO_2、O_3的质量浓度和温度、相对湿度、平均风速、水平能见度气象条件,分析了上海市PM_(10)、PM_(2.5)、SO_2、NO_2、O_3污染物的时间变化趋势。同时,利用多元线性回归模型及BP神经网络建立污染物与气象因素之间的相关关系,对其质量浓度进行预测,分析对比不同模型的预测结果。研究表明:2016—2020年上海市大气污染物质量浓度随时间变化整体呈现下降趋势;污染物质量浓度季节性差异显著,PM_(2.5)及PM_(10)质量浓度呈现"冬高夏低",而O_3质量浓度呈现"冬低夏高";可吸入颗粒物质量浓度(PM_(2.5)、PM_(10))与SO_2、NO_2质量浓度,O_3质量浓度与NO_2的质量浓度之间存在显著相关性;多元线性回归分析表明相对湿度、平均风速及水平能见度3个气象因素对上海市PM_(2.5)、PM_(10)质量浓度产生显著影响;温度、相对湿度、平均风速及水平能见度4个气象因素对上海市O_3质量浓度产生显著影响;多元线性回归分析表明上海市PM_(10)质量浓度与温度之间显著性水平为0.303,意味着温度对上海市大气PM_(10)质量浓度并没有产生显著影响;PM_(10)质量浓度随相对湿度的增加、平均气压及水平能见度的增大而减小;O_3质量浓度则与温度和平均风速呈正相关,与相对湿度和水平能见度呈负相关。相比多元线性回归,BP神经网络在预测上海市气象污染物质量浓度表现出强大的泛化能力,PM_(2.5)、PM_(10)、NO_2与O_3的真实值与预测值相关系数(r~2)分别为98.6%,97.4%,97.6%和98.3%。  相似文献   

6.
利用布设于北京市典型主城区的在线空气质量监测站2015年12月数据(小时质量浓度),探究北京主城区冬季大气污染特征的影响因素。结果表明,冬季主城区大气中O_3污染较轻,而NO_2、NO_x和PM_(2.5)污染较为严重。监测期间NO_2、NO_x和PM_(2.5)最大日均浓度分别是GB3095—2012二级标准浓度限值的2.0、6.4和4.3倍,超标天数分别占总天数的58.1%、48.4%和83.9%;而O_3浓度未超过二级标准限值。相关性分析表明,各污染物及能见度之间都呈现出高度相关性(P0.01)。其中,主城区环境空气中PM_(2.5)与NO_x和NO_2正相关系数分别高达0.752和0.839,O_3与PM_(2.5)、NO_x和NO_2均在P0.01水平上呈负相关关系,其中NO_2与O_3负相关性最大(r=-0.772,P=3.124×10-141);能见度与PM_(2.5)、NO_x和NO_2浓度存在显著负相关关系,其中与PM_(2.5)负相关性最大(r=-0.922,P=3.338×10-294),此外,能见度与O_3在P0.01的水平上呈高度正相关性。工作日NO_2、NO_x和PM_(2.5)小时浓度整体高于周末,污染物浓度曲线均出现2个峰值(浓度峰Ⅰ、浓度峰Ⅱ),工作日浓度峰Ⅰ受06:00—09:00市民工作早高峰出行影响,周末浓度峰Ⅰ受02:00—05:00外埠货车进城影响;工作日和周末的污染物浓度峰Ⅱ都出现在22:00左右。O_3的工作日和周末浓度曲线变化基本一致,均呈"双峰"形态,O_3浓度峰Ⅰ出现在14:00左右,高浓度O_3主要来源于大气光化学作用产生的二次污染,浓度峰Ⅱ出现在04:00、05:00左右,其值约为峰Ⅰ值的40%,可能与平流层臭氧垂直气流输送有关。  相似文献   

7.
为深入研究北京市采暖季PM_(2.5)中水溶性离子的污染特征及其影响因素,利用大流量采样器结合石英滤膜采集了2016年11月15日—2016年12月31日期间北京市典型污染天的PM_(2.5)样品(19个),采用离子色谱法测定了其中的水溶性无机离子成分,收集了同期北京市的日均气象数据和海淀区日均PM_(2.5)数据。应用热力学平衡模型ISORROPIA-Ⅱ分析了PM_(2.5)样品的酸度值,Traj Stat软件分析气流的72 h后向轨迹,并采用潜在源贡献因子分析法(PSCF)定位了PM_(2.5)潜在污染源的位置,浓度权重轨迹分析(WCWT)法定量解析了潜在污染源对北京PM_(2.5)质量浓度贡献的大小。结果表明:(1)PM_(2.5)的日均质量浓度变化范围为7.6~383μg·m~(-3),均值为114μg·m~(-3),污染天是清洁天的4.4倍;(2)10种水溶性离子的总质量浓度均值为44.61μg·m~(-3),SNA(NO_3~-、SO_4~(2-)、NH_4~+)占总水溶性离子的81.37%,污染天NO_3~-、SO_4~(2-)、NH_4~+质量浓度均值分别为20.35、16.16、8.68μg·m~(-3),分别是清洁天的4.7、3.5、3.6倍;(3)污染天PM_(2.5)酸性比清洁天强,污染天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4,清洁天NH_4~+的存在形式主要是(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3;(4)北京PM_(2.5)及其水溶性离子的污染除受本地污染源影响,还受河北省中部和南部以及内蒙古中部等区域传输的影响;(5)在北京采暖季低大气边界层以及三面环山的特殊条件下,风速和相对湿度是影响北京PM_(2.5)及其水溶性离子污染特征的2个主要气象因素,高湿度低风速的静稳天气条件可以造成以本地污染物为主的大气重污染,此外,一定范围内的低风速可以使周边地区高浓度的污染物传输至北京,加重大气污染。  相似文献   

8.
北京采暖期空气污染较非采暖期严重得多,但目前针对采暖期北京城市上风向、下风向、中心区和主干道路等典型人类活动区域的主要污染物浓度特征及其受气象条件变化影响的研究还比较缺乏,为了摸清北京市采暖期不同典型区域大气污染特征,更有针对性地制定环境空气污染防治对策,利用2014年采暖期首月(11月15日—12月14日)北京市北郊(八达岭)、南郊(永乐店)、城市中心区(天坛)、城市交通干道(永定门内大街)等典型区域的PM_(2.5)、SO_2、NO_x、O_3质量浓度监测数据和气象数据,分析4类代表性区域的环境空气污染特征和时空变化情况。结果表明,PM_(2.5)是各区域冬季主要污染物,日均质量浓度在61.75~143.81μg?m-3,总体空间分布状况为南郊最严重、城市交通干道和城市中心区次之、北郊的PM_(2.5)污染最轻,除北郊外其余监测点ρ(PM_(2.5))均超过二级标准限值。各区域的主要污染物略有不同,其中北郊ρ(SO_2)较其他区域高,白天12:00时最低(29.09μg?m-3),夜晚18:00—次日01:00持续居高(58.8~63.19μg?m-3),这与燃煤采暖等人类活动规律一致;南郊以PM_(2.5)、NO_x混合型污染为主;城市交通干道附近ρ(NO_x)和ρ(O_3)较高,表明局地光化学反应NO_x-O_3生消机制作用明显,污染物浓度变化与人类出行时间一致。气象条件对不同污染物浓度的影响存在差异,微风无持续风向、大气扩散条件较差时,PM_(2.5)呈现不断累积状态,SO_2、NO_x和O_3累积效应不明显,但其单日质量浓度峰值显著增加;北风和微风反复交替、大气扩散条件总体较好时,各监测点的SO_2、NO_x受地区性污染源排放影响波动不大,随扩散条件转差南郊ρ(PM_(2.5))会迅速增加。城市交通干道机动车排放典型污染物ρ(NO_x)及其二次污染物ρ(O_3)随着气象条件变化其峰值在日内变化显著。  相似文献   

9.
为了阐明大城市中心城区不同高度的空气质量差异及其成因,为大气污染防治工作提供科学支撑,该研究基于广州塔大气污染物垂直梯度观测平台的监测数据,采用环境空气质量综合指数和环境空气质量指数(AQI),分别对广州城区近地面层不同高度的空气质量进行评价。结果表明,2015年广州塔4个高度(地面、118 m、168 m和488 m)的空气质量综合指数分别为4.96、5.01、4.83和3.64,AQI超标率分别为27%、30%、25%和40%。总体上,中、低层(168 m以下)的空气质量差异较小,其中118 m点位的综合指数和AQI超标率相对较高;高层(488 m)因O_3污染尤其显著导致其AQI超标率为各高度最高,但O_3质量浓度上升的贡献被其他污染物质量浓度的大幅下降所抵消,故其综合指数反而最低。随着高度增加,PM_(2.5)和NO_2超标程度下降,O_3超标程度上升,导致高层的PM_(2.5)和NO_2几乎不超标,而O_3超标率达40%且其超标天数占AQI超标天数的比例高达99%。随着污染级别上升,PM_(2.5)和NO_2成为首要污染物的比例减少,O_3比例增加,O_3成为各高度AQI超标时最主要的首要污染物。当低层空气质量处于优或重度污染级别时,各层等级一致性相对较好;但在其他情况下,低层与高层的空气质量最多可相差3个级别。因PM_(2.5)和NO_2以低矮源排放贡献为主,而O_3来源于复杂的二次反应,使PM_(2.5)和NO_2质量浓度随高度上升而递减,而O_3质量浓度随高度上升而递增,最终形成了中、低层以PM_(2.5)、NO2和O_3复合污染为主、高层以O_3单一污染为主的空气质量垂直分布特征。  相似文献   

10.
为了评价清洁能源政策对济南市采暖季PM_(2.5)质量浓度及PM_(2.5)中水溶性离子的影响,于2016年11月—2017年3月(2016年采暖季)和2017年11月—2018年3月(2017年采暖季)济南市区清洁能源政策实施前后两个采暖季分别采集PM_(2.5)样品,采用离子色谱法得到了PM_(2.5)中的8种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、Na~+、K~+、Ca~(2+)、NH_4~+)的质量浓度,并对PM_(2.5)不同污染等级水溶性离子进行了变化分析。结果表明:(1)采用清洁能源后,济南市采暖季的污染等级从轻度污染变为良,PM_(2.5)日均质量浓度从98.34μg·m~(-3)降到83.48μg·m~(-3),达标率上升了15.42%;(2)8种水溶性离子的总质量浓度从90.78μg·m~(-3)降到了67.72μg·m~(-3),对比两年采暖季各离子的质量浓度发现,实施后除污染天K+和Na+的质量浓度有所增长外,其余离子质量浓度均比清洁能源使用前要低;(3)NO_3~-、SO_4~(2-)、NH_4~+(SNA)在水溶性离子中占比最高,能源政策实施后,SNA的质量浓度降低了12.32%-31.71%;实施后SO_4~(2-)的占比降低,NO_3~-占比升高,NO_3~-是最主要的二次污染离子;(4)两年采暖季的硫氧化率SOR、氮氧化率NOR值均大于0.1,说明NO_3~-、SO_4~(2-)主要来自于大气中NO_2和SO_2的二次转化,随着污染等级的升高,SOR和NOR基本呈现上升的趋势,尤其是在重度污染下,由于NO_2对SO_2的氧化反应起到很好的催化作用,SOR是清洁天的2倍;(5)采用清洁能源前后阴阳离子电荷当量(AE/CE)分别为0.76和0.96,PM_(2.5)整体从弱碱性恢复到中性。清洁能源的使用,有效降低了各水溶性离子的质量浓度,减小了PM_(2.5)质量浓度,改善了颗粒物的酸碱性,提高了采暖季环境空气质量。  相似文献   

11.
为研究PM_(2.5)与大气污染物浓度之间的关系以及气象条件对PM_(2.5)浓度的影响,本文运用数学统计方法,对北京顺义区2016年1月—12月PM_(2.5)及大气污染物和气象要素的数据资料进行分析并建立了北京顺义区PM_(2.5)浓度的估算模型.双变量相关性分析的结果表明,PM_(2.5)浓度与PM_(10)、SO_2、NO_2、O_3以及CO等大气污染物浓度与温度、湿度、压强和风速风向等气象条件间呈现强的相关性.建立了PM_(2.5)与单因素拟合模型,其中PM_(10)、NO_2和CO与PM_(2.5)浓度拟合模型的R~2均大于0.6.识别了对PM_(2.5)浓度有显著影响的二阶、三阶交互作用的因素交叉项.综合考虑单个影响因素与影响因素间交互作用的对PM_(2.5)浓度的影响,采用因子分析方法并对提取的主成分进行回归分析,建立了拟合度R~2为0.887的PM_(2.5)浓度估算模型.  相似文献   

12.
选取太原市城区10个监测点2014—2016年PM_(10)和PM_(2.5)日变化数据,分析和探讨了其时空变化特征,及其与人类经济活动的同步性规律;采用小波连续变换的功率谱方法识别颗粒物周期变化特征,采用可视化主成分分析法识别不同时间尺度下颗粒物变化的影响因素。结果表明,太原市大气颗粒污染物PM_(10)和PM_(2.5)质量浓度的变化存在明显的时空差异,新兴经济发展区较传统老工业区污染严重,颗粒物污染程度在冬季较为严重。小波分析结果显示,PM_(10)和PM_(2.5)时间序列的变化周期均以4~8 d的短周期为主(P0.05),污染物的质量浓度变化与城市经济活动的周波动变化相一致;PM_(10)和PM_(2.5)质量浓度最大值出现在周波动的中间时段,最小值出现在周末。可视化PCA结果揭示,大气颗粒物PM_(10)和PM_(2.5)季节性波动均受冬季影响较强;周波动周期内均受周三影响最大;一天之内PM_(10)和PM_(2.5)质量浓度分别受夜晚和早晨影响最大,但白天颗粒物质量浓度变化是造成其日变化特征的主要因素。研究结果有利于从不同时间尺度辨析能源城市大气颗粒物污染的多变特征,有针对性地开展大气污染防控,也可为管理部门制定相关标准和规范提供科学依据。  相似文献   

13.
为研究广州地区典型光化学污染过程形成的高浓度臭氧事件的变化特征及成因,2011年5月17—20日利用广州番禺大气成分站(GPACS)对污染气体(O_3、VOCs、NO_2、NO)、颗粒物(PM_1、PM_(2.5)、PM_(10))、能见度以及气象要素进行了监测.结果表明,光化学污染过程期间,臭氧总体浓度比较高,最大臭氧1 h浓度分别为103.8×10~(-9)、169.9×10~(-9)、146.1×10~(-9)以及115.5×10~(-9),远超国家二级标准93×10~(-9)(200μg·m~(-3)).但颗粒物浓度保持较低水平,颗粒物日均值远低于国家二级标准(PM_(10)为150μg·m~(-3),PM_(2.5)为75μg·m~(-3)),能见度整体较高.芳香烃和烯烃是臭氧生成潜势最大的两个成分,其中异戊二烯、间二甲苯、对二甲苯、甲苯等物种对臭氧生成贡献大.均压场-冷锋前天气形势带来的不利于污染物扩散的气象条件、强烈的辐射以及高浓度VOCs共同导致了这次高浓度臭氧污染事件的发生.  相似文献   

14.
大气灰霾污染已经成为了大气环境领域的研究热点之一,但是目前国内针对背景地区站点的大气污染形成机制和输送规律的研究仍然有限。利用PM_(2.5)、PM_(10)、CO、SO_2、O_3、NO_2等6种大气成分质量浓度数据、常规气象要素观测资料、结合HYSPLIT后向轨迹模式,对2015年1月15—28日发生在江苏省苏州市东山镇的一次持续十余天的空气污染过程进行了分析。结果表明,此次污染过程东山镇经历了一次完整的灰霾生成-积聚-消散的演变过程,其中包括两个主要污染时段,1月15—19日轻污染时段和1月22—26日重污染时段。ρ(PM_(2.5))/ρ(PM_(10))平均值达到62.8%(30.0%~93.4%),表明PM_(2.5)对东山大气颗粒物污染贡献显著。6种大气污染物相关性分析发现CO和NO_2与PM_(2.5)和PM_(10)相关性最好,人为燃烧源和交通源对灰霾形成贡献显著。高空较稳定的环流形势和地面弱气压场的配合以及低压高温高湿的不利气象条件,阻碍了污染物的垂直和水平扩散,是此次持续性灰霾天气形成的客观原因。通过风向、风速统计和后向轨迹分析发现,此次污染过程,在大风下颗粒物以远程输送为主,微风下颗粒物以局地排放为主。外来源的输送和本地源排放的叠加造成了灰霾的形成和积聚。轻污染时段,高浓度污染气团主要来自西北方向的远距离输送,来自山东、河北等工业发达地区的排放源对东山地区灰霾的形成影响显著。重污染时段,污染气团主要来自偏南方向的局地输送,此外来自湖南、江西一带的大规模生物质燃烧生成的高浓度污染气团输送也是污染加重的重要原因。来自东北方向的气流对此次区域灰霾污染起到了清洁作用。  相似文献   

15.
随着中国城市化和工业化的不断推进,大气污染治理形势严峻,PM_(2.5)作为首要的大气污染物,已经引起了公众和学术界的普遍关注。研究PM_(2.5)的时空分布特征及其质量浓度同植被覆盖度之间的关系,为区域大气污染联防联控提供数据支撑和理论依据。以大气污染严重的河南省为研究对象,利用2017年1月—2019年2月期间75个国控空气质量监测站的逐日PM_(2.5)质量浓度数据,通过空间插值技术,分析了PM_(2.5)质量浓度的时间和空间分布特征。基于MODID NDVI遥感卫星数据,采用像元二分模型反演获取植被覆盖度数据,再计算其与PM_(2.5)质量浓度的秩相关系数。研究发现,(1)总体上,河南省PM_(2.5)年均质量浓度逐年降低,由2015年的79μg·m~(-3)降至2018年的63μg·m~(-3),年均降幅达7.2%,但是依然超过国家二级标准(35μg·m~(-3)),污染防治形势仍然严峻。(2)从时间分布看,PM_(2.5)季节差异明显,月均质量浓度曲线大致呈"U"形,冬季质量浓度最高(113μg·m~(-3)),夏季最低(35μg·m~(-3)),春秋两季居中。(3)从空间分布来看,PM_(2.5)质量浓度在河南省内由南至北污染程度递减,形成了以污染最严重的郑州市、安阳市为中心的PM_(2.5)辐射圈。(4)植被覆盖度和PM_(2.5)质量浓度相关性强,秩相关系数为-0.55。从污染治理来看,提高植被覆盖度,增加植被面积对PM_(2.5)沉降有积极作用,但作用有限。  相似文献   

16.
利用2018年1—12月西安市13个环境空气质量监测点的六项大气污染常规分析指标(PM_(10)、PM_(2.5)、O_3、SO_2、NO_2和CO)逐小时监测数据,结合气象条件(温度、相对湿度、风向、风速、大气压、光照、紫外辐射、混合层高度及大气能见度)和颗粒物样品采集,对西安市近地面大气污染物浓度特征进行分析,结果表明,西安市近地面大气污染物浓度呈现明显的季节变化特征,冬季空气污染物主要为颗粒物(PM_(10)、PM_(2.5))对应质量浓度分别为:(154.04±92.88)、(101.84±60.11)μg·m~(-3),PM_(2.5)/PM_(10)的值为0.66,夏季空气污染物主要为O_3,质量浓度为(89.07±20.62)μg·m~(-3);西安市冬季PM_(2.5)数浓度、表面积浓度、质量浓度分别为(51 890±14 619)cm~(-3)、(2 882.21±939.83)μm~2·cm~(-3)、(0.32±0.13)mg·m~(-3),PM_(10)数浓度、质量浓度、表面积浓度分别为(51 897±14 618)cm~(-3)、(3 410.50±1 060.31)μm~2·cm~(-3)、(0.86±0.29)mg·m~(-3),数浓度粒径分布集中在0.010≤d_p≤0.484μm,占总数浓度的99.13%,表面积浓度粒径分布集中在0.072≤d_p≤8.136μm,占总表面积浓度的98.32%,质量浓度粒径分布集中在0.316≤dp≤8.136μm,占总质量浓度的98.75%。颗粒物数浓度对大气能见度影响最大的3个粒径段分别为d_p=0.762μm、d_p=1.956μm、d_p=1.232μm,3个粒径段与能见度的R~2(拟合优度)分别为:0.840、0.789、0.775;西安市夏季,在近地面环境温度大于30.23℃,相对湿度小于58.09%,光照强度大于107.83 W·m~(-2),紫外辐射强度大于324.10μW·cm~(-2)时,有利于近地大气层中高质量浓度O_3((112.16±53.01)μg·m~(-3))的生成与累积。研究结果可为西安市及汾渭平原其他城市大气污染物减排、大气污染防治策略的制定提供数据支持。  相似文献   

17.
已有研究发现汽车尾气和道路扬尘已成为城市大气PM_(2.5)的重要来源之一,植被拦截被认为是去除大气颗粒物的有效手段之一。为了解道路两侧园林植被对道路交通排放的PM_(2.5)浓度扩散的影响,选择园林植被生长最茂盛且雨水较少的9月,在北京北五环路旁的奥林匹克森林公园内沿平行五环路和垂直五环路进行了布点采样,并结合ADMS扩散模型进行研究。北五环是北京最繁忙的交通主干道之一,白天(7:00—18:00)每小时单方向机动车流量达5 000辆以上。研究结果表明,晴天、雨后晴天、污染天公园内大气PM_(2.5)质量浓度分别为(84.3±23.6)、(62.1±12.7)、(246.1±60.5)μg?m~(-3)。垂直五环路和平行五环路的各监测点PM_(2.5)质量浓度无显著差异,但在局地为弱南风条件下,PM_(2.5)质量浓度自南向北有略微降低的趋势。由道路汽车排放的PM_(2.5)随着与公路之间距离的增加而呈指数型下降。ADMS模拟表明晴天和污染天由道路汽车排放的PM_(2.5)对公园内环境大气PM_(2.5)质量浓度的直接贡献不超过2%;但雨后晴天道路交通排放的PM_(2.5)贡献较大,可达25%。园林植被对降低交通排放PM_(2.5)浓度的作用并不显著,其主要作用是对PM_(2.5)进行空间隔离,然后利用大气扩散稀释作用降低由交通排放的PM_(2.5)在环境大气中的质量浓度。  相似文献   

18.
收集北京市2014年PM_(2.5)质量浓度数据,利用小波变换探讨北京市各类监测站点PM_(2.5)污染的时间序列特征、主周期、突变特性,并结合气象资料,采用小波相干谱探究气象因子对PM_(2.5)的影响。结果表明,2014年北京市各类监测点PM_(2.5)质量浓度变化呈现波动-平稳-波动的相似变化趋势,其中1—4月和10—12月波动明显,且主周期相同(172 d)。采暖期间,南部站点PM_(2.5)质量浓度最高,采暖结束后,交通站点超越南部站点,成为PM_(2.5)质量浓度最高的站点。北京PM_(2.5)突变事件秋冬季节频繁而春夏较少,主要对应于重污染天气的生消过程。5类监测站点的PM_(2.5)质量浓度基本呈现南高北低的分布规律。南部站点PM_(2.5)污染最为严重、突变事件频次最高,该区局地污染排放显著,又是区域传输的重要通道,污染相对复杂;而北部站点污染水平最低、突变频次也最少;市区范围内交通站点污染相对突出。此外,气象因子对PM_(2.5)质量浓度变化影响巨大:在小尺度(0~20 d)上,PM_(2.5)与相对湿度相关性最突出;在中等尺度(20~64 d)上,PM_(2.5)主要受平均风速和相对湿度制约,但季节变化明显;大尺度(64 d)上,PM_(2.5)与日照时数和相对湿度相关性显著。  相似文献   

19.
以北京西山森林公园为林内观测点,北京海淀植物园为林外对照点,研究城市森林PM_(2.5)质量浓度变化特征,并对其影响因素进行分析。结果表明,林内外PM_(2.5)质量浓度日变化呈"双峰双谷"型,8:00和21:00左右是一天中的两个峰值,15:00和4:00左右是一天中的两个谷值,PM_(2.5)质量浓度林内(104.02μg·m~(-3))林外(82.52μg·m~(-3))。一年中PM_(2.5)质量浓度在冬季最高,春季次之,夏季最低,PM_(2.5)质量浓度年变化林内为冬季(115.46μg·m~(-3))春季(112.39μg·m~(-3))秋季(106.37μg·m~(-3))夏季(81.87μg·m~(-3)),林外为冬季(97.35μg·m~(-3))春季(94.07μg·m-3)秋季(93.17μg·m~(-3))夏季(61.86μg·m~(-3))。气温、降雨均与PM_(2.5)浓度呈负相关。晴天时,温度高、空气对流旺盛,PM_(2.5)浓度较低;降水对PM_(2.5)有很好的消减作用;风有驱散PM_(2.5)的作用。在高温高湿天气下,PM_(2.5)浓度高于其他天气情况。该研究可以丰富森林净化大气的理论,为环保部门相关政策的制定提供依据。  相似文献   

20.
以往的研究较多关注于城市环境空气PM_(2.5)的重金属污染特征和健康风险,而以交通源为主的相关分析较为匮乏。为探索高速公路环境空气PM_(2.5)中重金属季节变化特征,评价高速公路工作人员健康风险,于2018年3-10月分4次集中采集南昌市周边3条高速公路(昌樟、昌铜和温厚)服务区、收费站中环境空气的PM_(2.5)样品,运用电感耦合等离子体质谱联用仪(ICP-MS)监测了PM_(2.5)中6种重金属(Cu、Zn、Pb、Cd、Cr和Ni)质量浓度,分析其季节变化特征,并利用地累积指数法(Igeo)、美国环保局推荐的健康风险评价模型,对环境空气PM_(2.5)中6种重金属的污染特征及人体健康风险进行评价。结果表明高速公路服务区和收费站环境空气PM_(2.5)质量浓度的季节变化特征表现为春季秋季夏季,PM_(2.5)中不同重金属元素质量浓度的季节变化表现出显著性差异。总体上,不同季节PM_(2.5)中重金属质量浓度表现为ZnPbCrCuNiCd,其中Cr的平均质量浓度为4.07×10~(-2)μg·m~(-3),远高于城市水平。地累积指数评价结果表明6种重金属均受到不同程度的交通源污染,其中Zn和Cd的污染程度分级为严重污染,而Cu、Cr和Ni在秋季表现出更为严重的污染程度。健康风险评价结果表明,高速公路收费站和服务区环境空气的PM_(2.5)中重金属不存在非致癌风险,而致癌风险评价中,PM_(2.5)中Cr的致癌风险评价值超过阈值10~(-4),具有致癌风险,Ni的致癌风险评价超过10-5,具有潜在致癌风险。环境空气PM_(2.5)中重金属的污染特征及致癌风险均表现为秋季高于春季和夏季,交通源引起的大气Cr和Ni污染应受到重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号