共查询到20条相似文献,搜索用时 31 毫秒
1.
Deborah L. Hathaway 《Journal of the American Water Resources Association》2011,47(1):103-113
Hathaway, Deborah L., 2011. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(1):103‐113. DOI: 10.1111/j.1752‐1688.2010.00494.x Abstract: The western and southwestern United States include dozens of groundwater basins that cross political boundaries. Common among these shared groundwater basins is an overlay of differing legal structures and water development priorities, typically, with insufficient water supply for competing human uses, and often, a degraded ecosystem. Resolution of conflicts over ambiguously regulated groundwater has clarified transboundary groundwater policy in some interstate basins, while transboundary groundwater policy in international basins is less evolved. This paper identifies and contrasts approaches to transboundary groundwater policy, drawing from recent conflicts and cooperative efforts, including those associated with the interstate compacts on the Arkansas and Pecos Rivers; the Hueco and Lower Rio Grande Basins shared by New Mexico, Texas, and Mexico; and the Mexicali Basin in California and Mexico. Some efforts seek to fit groundwater policy into existing surface water allocation procedures; some strive for a better fit – incorporating scientific understanding of key differences between groundwater and surface water into policy frameworks. In some cases, neither policy nor precedent exists. The collective experience of these and other cases sets the stage for improved management of transboundary groundwater; as such, challenges and successes of these approaches, and those contemplated in several hypothetical model agreements, are examined. 相似文献
2.
Christopher J. Ruybal Terri S. Hogue John E. McCray 《Journal of the American Water Resources Association》2019,55(5):1130-1148
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations. 相似文献
3.
Elia M. Tapia‐Villaseor Eylon Shamir Sharon B. Megdal Jacob D. Petersen‐Perlman 《Journal of the American Water Resources Association》2020,56(3):409-430
Assessing groundwater resources in the arid and semiarid borderlands of the United States and Mexico represents a challenge for land and water managers, particularly in the Transboundary Santa Cruz Aquifer (TSCA). Population growth, residential construction, and industrial activities have increased groundwater demand in the TSCA, in addition to wastewater treatment and sanitation demands. These activities, coupled with climate variability, influence the hydrology of the TSCA and emphasize the need for groundwater assessment tools for decision‐making purposes. This study assesses the impacts of changes in groundwater demand, effluent discharge, and climate uncertainties within the TSCA from downstream of the Nogales International Wastewater Treatment Plant to the northern boundary of the Santa Cruz Active Management Area. We use a conceptual water budget model to analyze the long‐term impact of the different components of potential recharge and water losses within the aquifer. Modeling results project a future that ranges from severe long‐term drying to positive wetting. This research improves the understanding of the impact of natural and anthropogenic variables on water sustainability, with an accessible methodology that can be globally applied. 相似文献
4.
Laura Rodriguez Rosario Sanchez Hongbin Zhan Peter S.K. Knappett 《Journal of the American Water Resources Association》2020,56(3):387-408
The Allende–Piedras Negras (APN) aquifer is located between the states of Texas (United States [U.S.]) and Coahuila (Mexico). The Rio Grande crosses the aquifer, acting as a natural and political divide between the countries. However, it remains unclear whether the APN aquifer can be considered a truly transboundary aquifer flow system, which would potentially require joint management by two different administrative jurisdictions. The main purpose of this study was to evaluate the transboundary nature of this aquifer. This was achieved by developing a detailed hydrogeological model to analyze the direction of volumetric fluxes within the APN aquifer using Visual MODFLOW. The model simulated a spatially averaged cumulative drawdown of 0.76 m for the entire aquifer over an 18‐year modeling period (2000–2017). The flow convergence zone, previously located below the Rio Grande, has shifted to the U.S. side in most locations, driven by higher pumping rates of the wells located near the river. This shift of the convergence zone from one country to the other means that groundwater recharge from one side flows underneath the river to the other side. This qualifies the APN aquifer as a “transboundary groundwater flow system.” The procedure followed in this study may be applied to other aquifers that straddle the U.S.–Mexico border and may motivate future modeling studies on other poorly studied transboundary aquifers around the world and thereby enable bi‐national aquifer management. 相似文献
5.
W.L. Hargrove Z. Sheng A. Granados J.M. Heyman S.T. Mubako 《Journal of the American Water Resources Association》2021,57(1):170-185
The objectives were to (1) delineate the complex set of rules governing the fate and transfer of water rights as agricultural land is urbanized in Texas and New Mexico in the United States and Chihuahua in Mexico and (2) estimate the change in water use as a result of such urbanization. Important additional determinants of water use in the region include intensification of agriculture and the hydroschizophrenic policy framework. We conducted interviews with key informants to identify the possible outcomes for changes in water rights as land is urbanized. We constructed decision trees for each of the three jurisdictions, Chihuahua, Texas, and New Mexico, that identified the possible outcomes from urbanization. For each of the possible outcomes in the decision tree, we estimated a range of potential water use outcomes and the most likely water use outcome on a per unit of land area basis. Results show that urbanization of agricultural land has almost no impact on the aggregate demand for or use of surface water. However, the impacts of urbanization on groundwater use vary considerably over the region from Texas to New Mexico to Chihuahua. In New Mexico and Chihuahua where groundwater rights can be leased or sold to other users, the likely impact is a net increase in groundwater use as land is urbanized, ranging from 0 to 3,000 m3/ha in New Mexico and averaging 3,000 m3/ha or more in Chihuahua. In Texas, there is a net benefit in groundwater savings, but those savings are subject to being offset by increased groundwater pumping to meet the needs of expanding pecan production. The net result is continued groundwater depletion, threatening the life of the transboundary aquifers, the Hueco Bolson and the Mesilla Bolson, in the Middle Rio Grande basin (defined as the part of the basin between Elephant Butte Reservoir in New Mexico to the confluence of the river with the Rio Conchos from Mexico). 相似文献
6.
Aaron R. Mittelstet Michael D. Smolen Garey A. Fox Damian C. Adams 《Journal of the American Water Resources Association》2011,47(2):424-431
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield. 相似文献
7.
Luke Flores Ryan T. Bailey Catherine Kraeger‐Rovey 《Journal of the American Water Resources Association》2020,56(2):310-322
When the cone of influence of a pumping well reaches a nearby river, the resulting hydraulic gradient can induce enhanced seepage of streamflow into the aquifer. The rate of seepage is often modeled using analytical solutions that are simple to apply but may not reproduce field data due to mathematical assumptions not being met in the field. Furthermore, the appropriateness of such models has not been investigated in detail due to difficulty in measuring streamflow loss in the field. In this study, a field experiment was conducted on a reach of the South Platte River near Denver, Colorado to estimate pumping‐induced streamflow loss. A network of stream gauges, monitoring wells, and in situ measurements was used to observe streamflow rates, groundwater levels, and temperature to assess if pumping wells have a significant impact on streamflow, and to compare observed streamflow depletion against analytical solutions. Data collected suggest that pumping wells have a noticeable impact on streamflow. The analytical solutions proved accurate if streamflow was low and constant but performed poorly if streamflow was high and variable. Therefore, for this reach, the use of analytical solutions to predict streamflow may only be appropriate under low‐flow, constant‐flow conditions. Methods and results can be used to guide other streamflow depletion studies and to inform cases of pumping‐induced streamflow depletion, particularly in regard to water rights. 相似文献
8.
9.
Indicators for Transboundary River Management 总被引:2,自引:0,他引:2
10.
James Androwski Abraham Springer Thomas Acker Mark Manone 《Journal of the American Water Resources Association》2011,47(1):93-102
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater. 相似文献
11.
Evidence of groundwater management by aquifer users emerging under Integrated Water Resources Management (IWRM) initiatives is presented, by analyzing the Consejos Técnicos de Aguas (COTAS; Technical Water Councils or Aquifer Management Councils) in the state of Guanajuato, Mexico, established between 1998 and 2000 by the Guanajuato State Water Commission (CEAG). Two contrasting models influenced this attempt to promote user self-regulation of groundwater extractions: locally autonomous aquifer organizations with powers to regulate groundwater extractions versus aquifer organizations with advisory powers only. The COTAS were conceived as locally autonomous IWRM organizations consisting of all aquifer users that would work together to reduce groundwater over-extraction and stabilize aquifer levels, at a later stage. CEAG followed an expedient IWRM approach to develop the COTAS, setting achievable targets for their development and explicitly focusing on active stakeholder participation. The article shows that, due to struggles between the state and federal levels, the COTAS have become advisory bodies that have not led to reductions in groundwater extractions. It concludes that achieving user self-regulation of groundwater extractions requires a fuller delegation of responsibilities to the COTAS which would not be possible without addressing the institutional struggles over water governance at the state and federal levels. 相似文献
12.
Efthymios Darakas 《The Environmentalist》2002,22(4):367-375
Transboundary water resources require the cooperation of the countries involved, not only on the various uses of the water, but also on overall water quality and the protection of ecosystems. Transboundary rivers and their management constitute a contemporary issue of great significance. Cooperation between neighboring countries is not always easy, due to different socio-economic and political conditions. Therefore, the different needs and priorities between the countries involved need to be solved first. Since pollution does not stop at a State border, it is an example of something that can be solved only at the cross-border level. This paper presents the cross-border cooperation between two transnational Institutions; the Aristotle University of Thessaloniki (Greece) and the University of Sofia (Bulgaria), within the framework of Interreg programs. The first collaborated attempt was to carry out a coordinated program for monitoring the pollution of the Nestos River. The second was the protection and restoration of the ecosystem through the education of young engineers and the transfer of experiences and scientific knowledge across the borders. 相似文献
13.
Ryan Shepler Jordan F. Suter Dale T. Manning Chris Goemans 《Journal of the American Water Resources Association》2019,55(3):657-669
Conservation of groundwater resources is critical for maintaining the future productivity of irrigated land in the Ogallala Aquifer Region and beyond. This research explores motivations and behavior related to groundwater conservation among agricultural producers in the Colorado portion of the Republican River Basin, which is part of the Ogallala Aquifer. The empirical modeling uses data from a recently conducted survey to analyze how a common set of producer, farm, and resource characteristics influence groundwater values, concern for future groundwater availability, private conservation actions, and support for coordinated conservation efforts. We find two factors, producer age and land owner status, are consistently correlated with the key conservation‐related outcomes we evaluate. More generally, the results suggest considerable similarities in the characteristics that drive private conservation actions and support for coordinated conservation. This knowledge could be used to better target and incentivize future groundwater conservation efforts in the region. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series. 相似文献
14.
There is evidence of a looming groundwater crisis in India. Unlike in the case of surface water, competition around groundwater generally does not result in open conflicts. Measurability and visibility of surface water accord a clearer public perception of water quantities, which leads to conflicts. Groundwater in an aquifer is sourced in a dispersed manner, and boundaries, quantities and interdependencies are less visible or measurable. Hence, groundwater resources go through intense and intricate competition between users and uses before open conflicts begin. Competition occurs with reference to sources rather than around the resource. The interdependency of sources is a function of changing patterns of usage as intricacies of aquifer characteristics come into play. Governance institutions and regulatory frameworks of groundwater need to be sensitive to the various forms in which groundwater competition manifests in different hydrogeological settings, and the consequences of this in terms of access and rights, in relation to issues of equity and justice. 相似文献
15.
Kevin G. Boggs Robert W. Van Kirk Gary S. Johnson Jerry P. Fairley P. Steve Porter 《Journal of the American Water Resources Association》2010,46(6):1116-1132
Boggs, Kevin G., Robert W. Van Kirk, Gary S. Johnson, Jerry P. Fairley, and P. Steve Porter, 2010. Analytical Solutions to the Linearized Boussinesq Equation for Assessing the Effects of Recharge on Aquifer Discharge. Journal of the American Water Resources Association (JAWRA) 46(6):1116–1132. DOI: 10.1111/j.1752-1688.2010.00479.x Abstract: There is a need to develop a general understanding of how variations in aquifer recharge are reflected in discharge. Analytical solutions to the linearized Boussinesq equation governing flow in an unconfined aquifer provide a unified mathematical framework to quantify relationships among lag time, attenuation and distance between aquifer recharge and discharge and the effect of an up-gradient no-flow boundary. We applied this framework to three types of recharge: (1) instantaneous, (2) periodic, and (3) constant rate for a finite duration. When the temporal scale of recharge exceeds the diffusive aquifer time scale, recharge will be reflected in discharge quickly and with little attenuation. When aquifer time scale is large, most recharge events are shorter in scale than that of the aquifer, resulting in large attenuation. Attenuation is more sensitive to boundary effects than lag time, and boundary effects increase as recharge time scale increases. Boundary effects can often be ignored when the recharge source is farther than 1/3 of the domain length away from the no-flow boundary. We illustrate analytical results with application to the economically critical Eastern Snake River Plain Aquifer in Idaho. In this aquifer, detectable annual and decadal cycles in discharge can result from recharge no farther than 20 and 60 km away from the discharge point, respectively. The effects of more distant, long-term recharge can be detected only after a time lag of several decades. 相似文献
16.
宁波为典型的丰水型缺水城市,调蓄开发地下水库,是丰水型缺水城市或干旱地区减少地表和地下径流弃水,提高水资源利用率,缓和水资源供需矛盾的重要管理方案. 相似文献
17.
Suburban Areas in Developing Countries and Their Relationship to Groundwater Pollution: A Case Study of Mar del Plata, Argentina 总被引:1,自引:0,他引:1
Hector E. Massone Daniel E. Martinez Jose L. Cionchi Emilia Bocanegra 《Environmental management》1998,22(2):245-254
2 were sampled in order to verify the impact of these problems on groundwater. All samples were analyzed for major ions, and
about 30 of them for fecal coliforms and heavy metals. Nineteen samples were selected for pesticide analyses. The average
nitrate content was 80 mg/liter, eight times the regional background value. Fecal coliforms were detected in 60% of the analyzed
samples. Zinc content and a high Cl−/HCO3
− ratio were observed in the surroundings of the solid waste disposal area. Moreover, lindane and heptachlor pesticides were
detected in ten samples. 相似文献
18.
Scott M. Payne William W. Woessner 《Journal of the American Water Resources Association》2010,46(5):1003-1023
Payne, Scott M. and William W. Woessner, 2010. An Aquifer Classification System and Geographical Information System-Based Analysis Tool for Watershed Managers in the Western U.S. Journal of the American Water Resources Association (JAWRA) 46(5):1003-1023. DOI: 10.1111/j.1752-1688.2010.00472.x Abstract: Aquifers and groundwater systems can be classified using a variety of independent methods to characterize geologic and hydraulic properties, the degree of connection with surface water, and geochemical conditions. In light of a growing global demand for water, an approach for classifying groundwater systems at the watershed scale is needed. A comprehensive classification system is proposed that combines recognized methods and new approaches. The purpose of classification is to provide groundwater professionals, policy makers, and watershed managers with a widely applicable and repeatable system that reduces sometimes cumbersome complex databases and analyzes to straightforward terminology and graphical representations. The proposed classification system uses basin geology, aquifer productivity, water quality, and the degree of groundwater/surface water connection as classification criteria. The approach is based on literature values, reference databases, and fundamental hydrologic and hydrogeologic principles. The proposed classification system treats dataset completeness as a variable and includes a tiered assessment protocol that depends on the quality and quantity of data. In addition, it assembles and catalogs groundwater information using a consistent set of nomenclature. It is designed to analyze and display results using Geographical Information System mapping tools. 相似文献
19.
矿化度是地下水化学成份测定的重要指标,在环境监测中,用重量法测定矿化度是目前普遍采用的方法。其缺点主要为费时,繁琐,耗电。本文通过测定洛阳市地下水的电导率,分析对比电导率与矿化度的关联,并进一步用回归方程确定电导率与矿化度之间的数量关系,探索出用电导率法间接测定地下水矿化度,具有快速,经济,准确的优点。 相似文献
20.
Patrick D. Royer Matthew Tonkin Travis Hammond 《Journal of the American Water Resources Association》2014,50(4):963-976
As withdrawals from deep compartmentalized aquifers increasingly exceed recharge throughout the western United States, conjunctive water use management alternatives have become an applied research priority. This study highlights both details and limitations of the role of irrigation canal seepage as groundwater recharge, revealing the regional limitations of canal seepage as a dependable source of recharge in overdrawn aquifers. A suite of geochemical indicators were used together with a numerical model to evaluate current and future management scenarios focused on recharge derived from seepage from a region‐wide irrigation canal system. Twenty‐five years of static groundwater level data were used to relate spatial trends determined using geochemistry and groundwater modeling with “on‐the‐ground” management practices, which vary based on acreage, crop, and irrigation scheduling. Increasing groundwater age determined using isotope analysis, and declines in potentiometric heads, each correlate with increasing distance from the canal reaches. Predictive modeling indicates that if pumping is gradually reduced, as has been suggested by management agencies, that recharge from canal seepage will be negligible by 2035 due to regional groundwater through‐flow and the pattern of potentiometric head recovery. Unfortunately, historic hydrographs suggest that under current groundwater development conditions most wells are not sustainable, irrespective of proximity to the canal. 相似文献