首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petroleum lubricating oils, used throughout the economy, are distinct among petroleum products in their capacity to be recovered and recycled at the end of their useful life. Used lubricating oil is regulated at the state and federal level because of concerns about environmental impacts arising from improper disposal, although rates of recovery are not known. We present a material flow analysis of lubricants through California's economy in the years 2007–2012. We introduce a novel technique for computing aggregate waste generation from a collection of hazardous waste manifest records, and apply it in order to determine a recovery rate for used oil and to estimate the quantity of oil managed informally in the state. The records also offer a detailed view of the fate of used oils after they are recovered. We find that around 62% of lubricants are recoverable at end of life, of which 70–80% is being recovered. This rate shows a slight downward trend. If the trend is accurate, measures should be taken to improve the performance of the used oil management system. Policy opportunities exist to reduce the quantity of oil managed informally through improving access to responsible used oil management methods. These include increasing the collection of used oil from industrial sources as well as “do it yourself” oil changes, expanding in-state reprocessing capacity, and promoting increased out-of-state reprocessing of used oil. Our methods introduce new possibilities to make use of direct observation in material flow analysis, potentially improving data availability and quality and increasing the relevance of material flow methods in policy applications.  相似文献   

2.
The aim of this study is to evaluate whether a specific recycling system for used oil filters (UOFs) is environmentally viable by considering all steps of the product's life cycle. In that aspect an analysis of the environmental impacts regarding different waste management scenarios of UOFs in Greece is presented using the Life Cycle Assessment (LCA) approach. Waste scenarios varied from maximum feasible recycling and recovery of metals and used lubricant oil, to disposal of UOFs to landfills without any prior treatment. In order to perform this analysis, the principles of ISO 14040 were followed and a relevant LCA software was used (SimaPro 7.2). Additionally, the results of a previous work conducted by the authors were deployed, including some experimental measurements undertaken so as to evaluate and quantify the factors affecting the recovery of the lubricant oil contained in used automotive filters. Indicatively, it was estimated that a maximum of 1340 tons of used oil and 1810 tons of steel are disposed every year in Greece, as a result of the non-effective management of used automotive filters.  相似文献   

3.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

4.
Removal of copper from aqueous solutions containing 100–1000 ppm, using different Indian bark species, was performed on laboratory scale. The percentage removal of metal ions depends on the solution pH, bark species and time. The efficiency of copper removal by the used raw barks increases with a rise of solution pH and reaches a maximum of about 65–78% around pH 4–5. However, the decontaminated aqueous solutions were colored due to the dissolution of soluble organic compounds contained in the raw bark. This increases the biological and chemical oxygen demand (BOD and COD) of the solutions as well as the total organic carbon content (TOC). For this reason, raw bark should be treated either by chemical or biological means. Such treatment will allow the extraction of the soluble organic compounds and increase the chelating capacity and efficiency of the treated bark. Depending on the pH value, the chelating efficiency of treated barks is about 1.2–2.2 times that of the raw ones. Moreover, the retention capacity of the Indian treated bark varies from about 42–51 mg/g of dry bark. It is equal to or higher than that of common European species. About 1.8 mols of H3O+ are released, by the treated barks, for every mol of chelated copper ions. Moreover, scanning electron microscopy (SEM) observations show uniform distribution of metal ions throughout the copper saturated bark. Infra red (IR) spectra suggest that the copper ions are chelated to hydroxyl and/or carboxyl functional groups of organic compounds contained in the treated bark. It seems that the interaction of the copper ions with the bark follows a cation exchange mechanism. This hypothesis is supported by elution experiments that allow recovery of about 99% of the contained copper. The retention capacity of the treated bark is almost constant after five cycles of chelation–elution, suggesting that the ‘life time cycle' is sufficiently long for continuous industrial application. The spent copper loaded barks can either be incinerated or pyrolysed. It generates solids containing either ≈80% of CuO or ≈14% of Cu°, respectively. Such materials can be used either in the secondary or primary copper production, thus offering a friendly environmental solution of effluents' treatment. The suggested process can be used as an alternative to the classical technologies for effluent decontamination. It is also efficient for polishing effluents treated by other methods.  相似文献   

5.
A study on recovery of oil from sludge containing oil using froth flotation   总被引:1,自引:0,他引:1  
Induced air flotation was used to recover oil from synthetically prepared sludge containing oil. A commercial surfactant was used as the collector and frother. The effects of various parameters, namely flotation time, initial amount of oil in the feed and the amount of surfactant used on the recovery of oil were investigated. Within the range of operating conditions studied herein, the maximum oil recovery obtained was about 55%. A detailed study of flotation kinetics based on oil recovery was carried out. It showed that the process followed first-order kinetics.  相似文献   

6.
The paper presents the application of thermal remote sensing for mapping hydrocarbon polluted sites. This has been achieved by mono-window algorithm for land surface temperature (LST) measurements, using multi-date band 6 data of Landsat Thematic Mapper (TM). The emissivity, transmittance and mean atmospheric temperature were used as critical factors to estimate LST. The changes in the surface emissivity due to oil pollution alter the apparent temperature, which was used as a recognition element to map out oil polluted surfaces. The LST contrast was successfully used to map spatial distribution of hydrocarbon pollution in the Burgan Oil field area of Kuwait. The methodology can be positively used to detect waste dumping, oil spills in oceans and ports, besides environmental management of oil pollution at or near the land surface.  相似文献   

7.
Electrocoagulation with aluminum electrodes was used to treat the vegetable oil refinery wastewater (VORW) in a batch reactor. The effects of operating parameters such as pH, current density, PAC (poly aluminum chloride) dosage and Na(2)SO(4) dosage on the removal of organics and COD removal efficiency have been investigated. It has been shown that the removal efficiency of COD increased with the increasing applied current density and increasing PAC and Na(2)SO(4) dosage and the most effective removal capacity was achieved at the pH 7. The results indicate that electrocoagulation is very efficient and able to achieve 98.9% COD removal in 90 min at 35 mAcm(-2) with a specific electrical energy consumption of 42 kWh(kgCOD(removed))(-1). The effluent was very clear and its quality exceeded the direct discharge standard.  相似文献   

8.
Biodiesel has emerged as one of the most promising renewable energy to substitute existing petroleum-derived diesel fuel being used in transportation sectors. Among the various feedstocks reported for biodiesel production, Moringa oleifera oil is becoming a promising replacement for conventional diesel fuel. Therefore, this work provides a comprehensive overview of the recent progress in biodiesel production from Moringa oleifera oil. The physicochemical properties, fatty acid composition of oil and methyl esters, oil extraction methods, esterification, and transesterification process, and purification methods employed in the biodiesel production have been discussed.  相似文献   

9.
Waste cooking oil is a potential substitution of refined vegetable oil for the production of biodiesel due to the low cost of raw material and for solving their disposal problem. In this study, optimization of esterification process of free fatty acids in artificially acidified soybean oil with oleic acid has been carried out using methanol as an agent and ion exchange resin as a heterogeneous catalyst. The esterification reaction has been investigated based on the mass balance of the developed model. The model has been validated against experimental data and effects of temperature and catalyst weight have been analyzed. Thereafter, optimization process has been fulfilled for two different objective functions as conversion of acid oil and benefit. Optimization results indicated that the maximum conversion of acid is 95.95%, which is achievable at 4.48-g catalyst loading and reaction temperature of 120°C. Maximum benefit was obtained as US$0.057 per batch of reaction at a catalyst amount of 1 g and temperature of 120°C.  相似文献   

10.
Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features.The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations.Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate.Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative to transportation network and population distribution data. The models can be used on a regional scale to quickly map the relative site suitability for a RAP or RPCC aggregate recycling operation in a particular area based on transportation network and population parameters. The results can be used to identify general areas to be further evaluated on a site-specific basis using more detailed marketplace information. As transportation or population features change due to planning or actual development, the models can be easily revised to reflect these changes.  相似文献   

11.
This study aimed to identify the significant factors that give large effects on the efficiency of Cu(II) extraction from aqueous solutions by soybean oil-based organic solvents using fractional factorial design. Six factors (mixing time (t), di-2-ethylhexylphosphoric acid concentration ([D2EHPA]), organic to aqueous phase ratio (O:A), sodium sulfate concentration ([Na(2)SO(4)]), equilibrium pH (pH(eq)) and tributylphosphate concentration ([TBP])) affecting the percentage extraction (%E) of Cu(II) were investigated. A 2(6-1) fractional factorial design was applied and the results were analyzed statistically. The results show that only [D2EHPA], pH(eq) and their second-order interaction ([D2EHPA] × pH(eq)) influenced the %E significantly. Regression models for %E were developed and the adequacy of the reduced model was examined. The results of this study indicate that fractional factorial design is a useful tool for screening a large number of variables and reducing the number of experiments.  相似文献   

12.
This article focused on the performance of oil palm kernel shell (PKS) gasification using a medium-scale downdraft gasifier with a feedstock capacity of 500 kg at a temperature range of 399–700°C and at a feed rate of 177 kg/h. This article is important for evaluating the reliability of PKS gasification for commercial power generation activities from biomass. The process performance was evaluated based on the syngas calorific value (CV), syngas flow rate, and its cold gas efficiency (CGE). The syngas flow rates and CVs were measured using a gas flow meter and a gas analyzer in real time. The data obtained were then analyzed to evaluate the performance of the process. The results showed that the CGE of the process was moderately high (51%) at 681°C, with a high syngas CV (4.45–4.89 MJ/Nm3) which was ideal for gas engine applications. The PKS gasification performance increased when the reactor temperature increased. Projections were made for the CGE and the syngas CV for the PKS gasification with increased reactor temperatures and it was found that these values could be increased up to 80% and 5.2 MJ/Nm3, respectively at a reactor temperature of 900°C. In addition, the estimated power that could be generated was about 600 kWe at a maximum operation of 500 kg/h of feed rate. Based on the analysis, a medium-scale PKS gasification is observed to be a promising process for power generation from biomass due to the favorable performance of the process.  相似文献   

13.
Caesalpinea eriostachys seed oil, as a source of triglycerides with potential application for biodiesel production in Mexico is introduced. Its lipid profile obtained by Gas Chromatography-Mass Spectrometry (GC-MS) revealed saturated and unsaturated glycerol esters as the constituents. Therefore, heterogeneous and homogeneous catalyzed transesterification reactions were assayed employing ZnAl hydrotalcites and KOH, as the catalysts, respectively. The transesterification reactions yielded 59% for Zn/Al(2), 79% for Zn/Al(4), and 90% for KOH, depicting typical behavior, as in biodiesel production data from literature, where Zn-Al hydrotalcites or KOH were assayed. The caloric, density, viscosity values, and fatty acid methyl esters profile from reaction products were concordant to EN 14214, suggesting C. eriostachys as a promising feedstock for biodiesel production.  相似文献   

14.
In the present work, a novel cellulose-based porous heterogeneous solid acid catalyst encapsulation of ferriferous oxide (Fe3O4) and sulfonated graphene (GO-SO3H) into cellulose to form composite porous microspheres catalyst (GO-SO3H/CM@Fe3O4) was synthesized and evaluated for biodiesel production from Pistacia chinensis seed oil. The SEM, EDS and FTIR analysis revealed that the catalyst GO-SO3H/CM@Fe3O4 owned stronger active sites and GO-SO3H dispersed well in porous surface and inside of cellulose support. Under the optimum conditions, microwave-assisted transesterification process was carried out with the best catalyst amount, i.e. 5 wt% GO-SO3H/CM@Fe3O4 (weight ratio of GO-SO3H/cellulose), and conversion yield reached 94%. The prepared catalyst could be easily separated from reaction solution by extra magnetic field and reclaimed at least five runs.  相似文献   

15.
Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to enhance the rehabilitation process of the affected mat layer of soils. Other appropriate mitigating measures, such as subsequent monitoring of hydrocarbon levels at suitable intervals after the clean up activities, are also recommended, with reference to the findings of this study, for effective management of the affected area.  相似文献   

16.
Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.  相似文献   

17.
In this paper, beetle antennae search algorithm-based mixed kernel relevance vector regression (BASA-MkRVR) model is presented and applied to predict the dissolved gases content in power transformer, and beetle antennae search algorithm (BASA) is used to select the appropriate kernel parameters and controlled parameter. The RVR model with RBF kernel (RBFRVR) and the RVR model with Sigmoid kernel (SigmoidRVR) are, respectively, used to compare with the proposed BASA-MkRVR model in order to testify the superiority of BASA-MkRVR compared with RBFRVR and SigmoidRVR. The experimental results indicate that BASA-MkRVR has more excellent prediction ability for the dissolved gases content in power transformer oil than RBFRVR and SigmoidRVR.  相似文献   

18.
In this paper, the performance of direct injection diesel engine was experimentally investigated under the influence of two different pistons’s geometry deep bowl combustion chamber (DBCC) and toroidal combustion chamber (TCC) compared with standard piston combustion chamber (SPCC) geometry. The experiments were carried out standard atmospheric conditions of 1.01325 bar and 30 ± 2 °C. The piston bowl was designed and developed without modifying the compression ratio of the engine. The investigations were carried out with B25 (25% GOME + 75% diesel), B50 (50% GOME + 50% diesel), B75 (75% GOME +25% diesel) and B100 (100% GOME) by volume blends for three different bowl geometries. The thermogravimetric analysis (TGA) was given the importance of higher in-cylinder temperature for the mass change of GOME leads to a more premixed phase of combustion. The results showed that DBCC has better combustion characteristics when compared with SPCC and TCC for all the blends. The B25 and B50 blends showed good combustion characteristics with DBCC and SPCC individually. While TCC showed average engine characteristics for all the blends categorically, the brake thermal efficiency for B25 blend confirmed a 4.7% higher than SPCC-diesel with DBCC piston, and the smoke, CO (Carbon monoxide), and HC (Hydrocarbon) are reduced by 9.2%, 30.7%, and 4.6%, respectively. Thus, the B25 blend in a DBCC piston engine was observed to be the distinction than other configurations. The results confirmed that the DBCC is a good option for B25 blend.  相似文献   

19.
Many UK local authorities, looking to meet their regulatory recycling targets, have opted for voluntary kerbside collection schemes for source segregated recyclables from households. The success of a recycling service is highly dependant on the number of people who participate in the service and the frequency of its use. High participation rates are therefore an essential component of any effective kerbside collection scheme. It is commonly accepted that recycling behaviour is strongly influenced and motivated by personal opinions as well as external issues such as access and convenience. This paper characterises the recycling attitudes within West Oxfordshire, UK, and compares them with the results from a previous study conducted during 2003 in Brixworth, in Daventry, UK. From 1st April 2004, West Oxfordshire District Council, expanded its kerbside collection scheme for dry recyclables, adding cardboard, batteries, aerosols and mixed plastics to the already collected recyclables (paper, glass, textiles and metals) and increasing the frequency from fortnightly to weekly In this study, the recycling attitudes and behaviour of a cross-sectional socio-economic sample from households from West Oxfordshire, is investigated. It is observed that the propensity to recycle varies between individuals and socio-economic areas, and that recycling is influenced by concern for future generations, the need to bury less waste in landfills, and the fact that recycling saves resources and protects the environment. The results from this study can be used to help inform local authorities who are considering the development of their recycling schemes and associated promotional campaigns based on an understanding of their socio-demographic profile.  相似文献   

20.
In this work we applied base catalyzed transesterification to convert non-edible welted thistle oil (Carduus acanthoides) as new non-edible feedstock into biodiesel (Fatty acid methyl esters). The highest biodiesel yield of 88% was obtained using optimized reaction conditions of 70°C and 5:1 molar ratio (methanol:oil). The synthesized esters were characterize and confirmed by the application of NMR and FT-IR techniques. Gas chromatography and mass spectroscopy identified different fatty acids as palmatic acid (C16:0), oleic acid (C18:1), linoleic acid (18:2), arachidic acid (C20:0), eicosanic acid (C20:1), and erucic acid (C22:1) in the oil of welted thistle. Six corresponding methyl esters reported in welted thistle oil biodiesel includes 9-hexadecenoic acid, hexadecanoic acid, 9-octadecadienoic acid, 11-eicosanoic acid, eicosanoic acid and 13-docosenoicacid. Fuel properties, such as density @40°C Kg/L (0.8470), kinematic viscosity @ 40°C c St (4.37), flash point (95°C), cloud point (+4°C), pour point (?5°C), and sulfur contents (0.0112% wt) of the biodiesel produced were compatible with American Society for Testing and Materials D 6751 specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号