首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
好氧硝化颗粒污泥膜生物反应器性能和膜污染研究   总被引:4,自引:3,他引:1  
实验研究了好氧硝化颗粒污泥膜生物反应器AGMBR的处理性能,并将其与活性污泥膜生物反应器ASMBR进行对比,考察了颗粒污泥在减缓膜污染中所起的作用.好氧硝化颗粒污泥膜生物反应器AGMBR连续稳定运行102 d,系统具有良好的去除有机物和同时硝化反硝化能力,在进水COD和NH+4-N浓度分别为500和200 mg/L时,COD、NH+4-N和TN的去除率分别稳定在86%、94%和45%以上.颗粒污泥有效减缓了膜污染,延长了膜清洗的周期,AGMBR中的膜污染以膜孔堵塞为主,占总阻力的64.81%;滤饼层的阻力为2.1×1012m-1,远小于ASMBR中的16.07×10"m-1;膜清洗周期是相同条件下ASMBR的2.43倍以上;而且AGMBR内不断有新颗粒生成,维持了AGMBR系统性能和运行的稳定.  相似文献   

2.
采用序半连续式反应器(sequencing fed-batch reactor,简称SFBR)对人工合成废水顺序地进行硝化和反硝化动力学进行了研究.硝化和反硝化所用微生物为活性污泥.反应器在不同的操作条件进行操作,获得了用于确定动力学常数的数据;获得动力学参数um=0.05 h-1,KNO=2.0 mg/L,y=0.47 mg X/mg N,a=0.001 h-1.类似地确定了反硝化动力学参数kD=0.01 h-1和KD,NO=0.4 mg/L.在一定范围内硝化和反硝化速率随着氨浓度和硝酸盐浓度的增加而增加.实验数据表明,硝化和反硝化的动力学符合Monod动力学方程.  相似文献   

3.
The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10 % by volume). The results indicate that landfill leachate addition of up to 10 % (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r 2?=?0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm3 and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm3 in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.  相似文献   

4.
This paper describes results from a pilot study of a novel wastewater treatment technology, which incorporates nutrient removal and solids separation to a single step. The pseudoliquified activated sludge process pilot system was tested on grit removal effluent at flowrates of 29.4 to 54.7 m3/d, three different solid residence times (SRT) (15, 37, and 57 days), and over a temperature range of 12 to 28 degrees C. Despite wide fluctuations in the influent characteristics, the system performed reliably and consistently with respect to organics and total suspended solids (TSS) removals, achieving biochemical oxygen demand (BOD) and TSS reductions of > 96% and approximately 90%, respectively, with BOD5 and TSS concentrations as low as 3 mg/L. Although the system achieved average effluent ammonia concentrations of 2.7 to 3.2 mg/L, nitrification efficiency appeared to be hampered at low temperatures (< 15 degrees C). The system achieved tertiary effluent quality with denitrification efficiencies of 90 and 91% total nitrogen removal efficiency at a total hydraulic retention time of 4.8 hours and an SRT of 12 to 17 days. With ferric chloride addition, effluent phosphorous concentrations of 0.5 to 0.8 mg/L were achieved. Furthermore, because of operation at high biomass concentrations and relatively long biological SRTs, sludge yields were over 50% below typical values for activated sludge plants. The process was modeled using activated sludge model No. 2, as a two-stage system comprised an aerobic activated sludge system followed by an anoxic system. Model predictions for soluble BOD, ammonia, nitrates, and orthophosphates agreed well with experimental data.  相似文献   

5.
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.  相似文献   

6.
Efficient nutrient removal in decentralized wastewater treatment systems is a challenging task. To improve the removal of organic matter and nitrogen from wastewater, two types of bioreactors using membrane-aerated biofilm reactor (MABR) and microbial fuel cell (MFC) techniques were evaluated. During more than 250 days of continuous-flow reactor operation, both reactors showed consistently high chemical oxygen demand removal (>86%). At an influent ammonium-nitrogen (NH4(+)-N) concentration of 30 mg N/L, the average effluent NH4(+)-N concentrations were 6.2 and 0.5 mg N/L for the MABR and MFC reactor, respectively, while the effluent nitrate-nitrogen (NO3(-)-N) concentrations were 5.4 mg/ L in the MABR and 19.2 mg/L in the MFC-based reactor. The overall total inorganic nitrogen removal efficiencies were 64% and 36% for the MABR and MFC reactor, respectively. At the measured dissolved oxygen concentrations of 5.2 and 0.23 mg/L in the aerobic/anoxic zone of the MFC and MABR, respectively, a specific oxygen uptake rate of 0.1 g O2/g VSS-d, resulting from ammonia oxidation, was detected in the settled sludge of the MFC, while no nitrifying activity of the sludge from the MABR was detected. Molecular microbial analysis demonstrated a link between the bacterial community structure and nitrifying activity. The relatively high abundance of Nitrosomonas europaea was associated with its detectable nitrification activity in the settled sludge of the MFC. The results suggest that MABR and MFC techniques have the potential to improve organic and nitrogen removal in decentralized wastewater systems.  相似文献   

7.
A microbiological study conducted as a complement to kinetic studies of biological denitrification as a process for treating high-sodium-nitrite wastewaters generated from ship-boiler-tube cleaning is described. The number, genera, and denitrifying capabilities of the organisms inhabiting anoxic suspended-growth reactors used in the kinetic studies were evaluated for four experimental phases. The results regarding the enumeration of bacteria supported the findings of the kinetic studies as follows: (i) the better nitrite-removal efficiencies observed in the nitrification/denitrification system as compared with direct denitrification were confirmed by the presence of larger populations of organisms capable of completely reducing nitrate or nitrite; (ii) the presence of metals in concentrations associated with boiler-tube wastewater did not affect removal performance in the nitrification/denitrification systems, nor did it affect the density of complete denitrifiers; (iii) increasing sludge ages resulted in increasing nitrite-removal efficiencies as well as populations of complete denitrifiers; and (iv) a decrease in nitrate-removal efficiencies when the actual wastewater was introduced to a system that had been acclimated to the synthetic wastewater coincided with a reduction in the number of complete denitrifiers. Regarding the types of organisms found in this study, denitrifying strains of Alcaligenes and Pseudomonas were always present in the anoxic reactors along with other denitrifying and non-denitrifying bacteria of the same genera, or other genera such as Acinetobacter and Flavobacterium. However, members of the genus Alcaligenes were the only complete denitrifiers found in the anoxic reactors, and hence they are likely to play a key role in the denitrification process.  相似文献   

8.
生物处理单元采用水解酸化、多级串联接触曝气、连续流的除磷脱氮A2/O工艺,并辅以外排厌氧富磷污水侧流除磷,开发了一个新型的具有强化除磷脱氮功能的污泥减量HA—A/A—MCO工艺。用该工艺处理校园生活污水发现,在SRT60d、进水COD316~407mg/L、NH4+-N30~40mg/L、TN35~53mg/L、TP8—12mg/L的条件下,出水COD≤18mg/L、NH4+-N≤2.1mg/L、TN≤10.3mg/L、TP≤0.44mg/L。研究还发现,水解酸化池处理产生的VFA能有效促进生物除磷脱氮,导致厌氧释磷量达57mg/L,进入化学除磷池的侧流液量仅相当于进水量的13%;系统最主要的脱氮形式是SND和缺氧反硝化,SND脱氮占脱氮总量的50%,缺氧反硝化占26%;HA-A/A—MCO系统有效实现了生物相分离,并利用生物捕食作用获得较低的污泥产率,0.1gMLSS/gCOD。  相似文献   

9.
水解酸化-A~2O污泥减量工艺的运行性能研究   总被引:2,自引:0,他引:2  
生物处理单元采用水解酸化、多级串联接触曝气、连续流的除磷脱氮A2/O工艺,并辅以外排厌氧富磷污水侧流除磷,开发了一个新型的具有强化除磷脱氮功能的污泥减量HA-A/A-MCO工艺。用该工艺处理校园生活污水发现,在SRT60 d、进水COD 316~407 mg/L、NH4+-N30~40 mg/L、TN35~53 mg/L、TP 8~12 mg/L的条件下,出水COD≤18 mg/L、NH4+-N≤2.1 mg/L、TN≤10.3 mg/L、TP≤0.44 mg/L。研究还发现,水解酸化池处理产生的VFA能有效促进生物除磷脱氮,导致厌氧释磷量达57 mg/L,进入化学除磷池的侧流液量仅相当于进水量的13%;系统最主要的脱氮形式是SND和缺氧反硝化,SND脱氮占脱氮总量的50%,缺氧反硝化占26%;HA-A/A-MCO系统有效实现了生物相分离,并利用生物捕食作用获得较低的污泥产率,0.1 g MLSS/g COD。  相似文献   

10.
针对反硝化聚磷菌的生物学特性,设计并制作了硝化反硝化除磷气升式环流生物膜反应器,并就其对生活污水的脱氮、脱碳和除磷过程进行了试验.试验结果表明,当进水COD为309.8 mg/L、NH4 -N为116.0 mg/L、PO34-P为10.5 mg/L时,它们的去除率分别为95.3%、94.6%和73.1%.通过间歇试验表明该反应器可以实现反硝化除磷.  相似文献   

11.
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。  相似文献   

12.
Vaiopoulou E  Aivasidis A 《Chemosphere》2008,72(7):1062-1068
A pilot-scale prototype activated sludge system is presented, which combines both, the idea of University of Cape Town (UCT) concept and the step denitrification cascade for removal of carbon, nitrogen and phosphorus. The experimental set-up consists of an anaerobic selector and stepwise feeding in subsequent three identical pairs of anoxic and oxic tanks. Raw wastewater with influent flow rates ranging between 48 and 168 l d(-1) was fed to the unit at hydraulic residence times (HRTs) of 5-18 h and was distributed at percentages of 60/25/15%, 40/30/30% and 25/40/35% to the anaerobic selector, 2nd and 3rd anoxic tanks, respectively (influent flow distribution before the anaerobic selector). The results for the entire experimental period showed high removal efficiencies of organic matter of 89% as total chemical oxygen demand removal and 95% removal for biochemical oxygen demand, 90% removal of total Kjeldahl nitrogen and total nitrogen removal through denitrification of 73%, mean phosphorus removal of 67%, as well as excellent settleability. The highest removal efficiency and the optimum performance were recorded at an HRT of about 9h and influent flow rate of 96 l d(-1), in which 60% is distributed to the anaerobic selector, 25% to the second anoxic tank and 15% to the last anoxic tank. Consequently, the plant configuration enhanced removal efficiency, optimized performance, saved energy, formed good settling sludge and provided operational assurance.  相似文献   

13.
Investigations were undertaken to study the occurrence and progress of nitrification during aerobic digestion of activated sludge in a wide range of initial concentrations of total solids (1000 to 80 000 mg litre(-1), initial pH range of 4.5 to 10.4 and digestion temperature range of 5 degrees to 60 degrees C. Batch aerobic digestion studies on activated sludge grown on wastewater (enriched with organic solids from human excretal material) indicate that almost complete elimination of the 'biodegradable' matter of the activated sludge was one of the essential prerequisites to initiate nitrification. Favourable ranges of temperature and pH for nitrification were observed to be 25 degrees to 30 degrees C and 6.0 to 8.3, respectively. With all favourable conditions, a minimum period of about 2 days was necessary for population build-up of genera Nitrosomonas and Nitrobacter, and to initiate nitrification. Nitrate formation invariably lagged behind nitrite formation, but under certain conditions both phases of nitrification were observed to progress hand in hand.  相似文献   

14.
低C/N比水产养殖废水生物脱氮实验研究   总被引:5,自引:1,他引:4  
随着短程硝化-反硝化理论研究的发展,在低C/N比条件下,实现污水的生物脱氮处理已成为可能。为此,设计了水产养殖用水的三级生物膜短程硝化-反硝化处理工艺,并对该工艺在去除模拟水产养殖废水主要污染物的作用进行了初步研究。研究结果表明,在进水pH值7.5~8.5,温度为28~32℃,溶解氧为0.5~1 mg/L,游离氨浓度为5~10 mg/L的条件下,模拟废水的COD、NH4+-N和TN的平均去除率分别达到94.4%、91.6%和70.1%;并且低C/N比对出水氨氮NH4+-N的去除率影响不大,NO2--N的平均浓度控制在5.2 mg/L以下,低于鱼类的耐受浓度。表明该短程硝化-反硝化工艺设计,可用于低C/N比水产养殖废水主要污染物的生物处理,尤其是可消除NO2--N对水产养殖的潜在威胁,基本达到养鱼回用标准。  相似文献   

15.
以好氧颗粒污泥接种小试柱形SBR,采用自配无机氨氮废水为进水,在中温(28~30℃)条件下通过逐步提升进水NH4^+-N浓度(100~650mg/L)和缩短水力停留时间(8~4h)快速培养硝化颗粒污泥。实验结果证实,以好氧颗粒污泥接种可以促使硝化颗粒污泥快速形成,36d时粒径〉0.21mm的颗粒污泥占总数的93%,颗粒污泥NH4-N比去除速率为50.53mgNH4^+-N/(gSS·h)。硝化颗粒污泥具有良好的短程硝化性能,亚硝酸盐产生速率和累积率分别保持在3.3kgNO2-N/(m^3·d)和85%以上。反应初期高FA和反应末期高FNA的共同抑制是该研究中实现和维持稳定短程硝化的关键因素。  相似文献   

16.
厌氧氨氧化菌接种污泥的选择培养过程研究   总被引:9,自引:2,他引:9  
厌氧氨氧化菌的2种不同接种污泥培养实验表明,厌氧消化污泥和好氧硝化污泥均可成功启动厌氧氨氧化过程.接种厌氧消化污泥比好氧硝化污泥培养的厌氧氨氧化菌启动快,但后者去除效果较好.接种好氧硝化污泥的反应器的厌氧氨氧化速率随着氨氮基质进水浓度的增加呈线性增加.进水氨氮浓度为280 mg/L时的氨氮平均去除率达91%;而接种厌氧消化污泥的相应氨氮平均去除率仅为52%.厌氧氨氧化过程以接种好氧硝化污泥来启动为宜.  相似文献   

17.
Abstract

Nitrogen removal by a methane fermentation plus activated sludge process with the intermittent aeration was presented based upon a full‐scale pig farm experiment. Swine wastewater had a T‐N/BOD ratio from 0.2–0.29. The BOD concentration input to the process ranged from 1050–1608 mg l‐1 and the T‐N concentration from 273–350 mg l‐1. More than 90% of organic carbon was removed in each experimental run. Only small concentrations of NO3‐N were found in the effluent and higher than 60% of the T‐N and 73% of NH4‐N which were loaded to the intermittent aeration tank was removed. The nitrogen balance of each run was calculated. Denitrification was estimated to be accountable for 45–90% of the T‐N removed in the intermittent aeration tank. Denitrification rate increased as the BOD concentration increased (> 1300 mg l‐1). The T‐N removal percentage was a function of the T‐N/BOD ratio of the influent. Although higher DO concentration (> 3 mg l‐1) did not enhance the denitrification rate, nitrification did maintain at relative higher rates at a lower DO concentration (ave. 1.5 mg l‐1). An operational condition of intermittent interval of aeration/nonaeration at 1:1 hr is better than that of the condition at 3:1 hr. As a result, T‐N and NH4‐N were removed up to 30% and 40% respectively, and the denitrification rate reached 79% in the intermittent aeration tank. An experimental run in a pilot plant on treating anaerobically pretreated swine wastewater was observed to verify simultaneous nitrification/denitrification. The results of the full‐scale plant experimentation seem to be confirmed by those obtained from the pilot plant runs.  相似文献   

18.
Ca2+对上流式多级厌氧反应器处理蔗渣渗滤液的影响   总被引:1,自引:1,他引:0  
研究了上流式多级厌氧反应器(UMAR)处理蔗渣渗滤液过程中Ca2+浓度对反应器运行特性和颗粒污泥性质的影响。结果表明,对于蔗渣渗滤液而言,进水中低浓度的Ca2+浓度(80~300 mg/L)对颗粒污泥产甲烷活性无抑制,COD去除率最高可达93.3%;Ca2+浓度达到500 mg/L以上时,对厌氧颗粒污泥的活性有抑制作用;随着Ca2+浓度进一步升高,抑制作用加强,污泥灰分明显升高,活性成分下降,COD去除效率明显降低,污泥粘结沉积在反应器底部,导致系统内循环出现障碍。因此,在实际生产中应减少废水中Ca2+的引入量。  相似文献   

19.
一株高效异养硝化-好氧反硝化菌的分离鉴定及脱氮性能   总被引:6,自引:0,他引:6  
从经驯化的污泥中筛选出一株异养硝化-好氧反硝化细菌,编号为TN-05,通过形态学特征观察,生理生化特征试验和核酸序列分析鉴定其为门多萨假单胞菌(pseudomonasmendocina)。同时对其进行脱氮性能研究,结果表明,TN-05具有较好的异养硝化能力,菌株在培养至48h时对总氮和氨氮去除率均能达95%以上。通过反硝化能力验证实验发现,菌株对NO3-N和N0f—N也分别具有较好的去除效率。将菌株应用于人工合成废水中,发现对废水中氨氮优先利用并能在24h时使去除率接近100%,对硝态氮和亚硝态氮也具有一定的去除效率。因此,菌株TN-05是一株同时具备异养硝化和好氧反硝化能力的高效菌株。  相似文献   

20.
Microbial activity in a combined UASB-activated sludge reactor system   总被引:1,自引:0,他引:1  
Huang JS  Wu CS  Chen CM 《Chemosphere》2005,61(7):1032-1041
A combined upflow anaerobic sludge bed-activated sludge (UASB-AS) reactor system with consistently wasting of excess biomass was used to treat suspended-solids pre-settled piggery wastewater (COD=2000 mg l(-1), total Kjeldahl nitrogen TKN=400 mg l(-1), suspended solids=250-400 mg l(-1)). Thus, the activity of nitrogen-related microbial groups in each individual bioreactor was investigated. When the granules retention time (GRT) of 20-50 d in the UASB reactor, the solids retention time (SRT) of 10-25 d in the AS reactor and the recycle-to-influent ratio (Re) of 1 were maintained, the combined system removed 95-97% of chemical oxygen demand (COD), 100% of TKN and 54-55% of total nitrogen (TN). Denitrification and methanogenesis occurred in the UASB reactor so that both biochemical processes contributed to most of the COD removal and, complete nitrification (most of the TKN removal) occurred in the AS reactor. Compact granules with good settling abilities developed in the UASB reactor, and rapid rates of granulation of break-up granules in the UASB reactor were confirmed by experiments. The activity of nitrifiers and denitrifiers (an=0.68-0.87; adn=0.55-0.70) and the calculated specific nitrification and denitrification rates (qn=0.26-0.47 mg NH4+ -N mg VSS(-1)d(-1); qdn=0.046-0.076 mg NOx- -N mg VSS(-1)d(-1)) significantly increased with decreasing SRT and GRT, respectively. Accordingly, the combined UASB-AS reactor system should be regarded a promising alternative for the removal of organic carbon and nitrogen from piggery wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号