首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance of a Lagrangian dispersion model was examined in connection with its dependency on the boundary layer modelling and the input data resolution. The European Tracer Experiment (ETEX) data were used as reference. According to the sensitivity analysis of the model performance, the long-range dispersion model with the sparse input data was not noticeably different from that with the finer resolution data. The assumption of the prescribed constant mixing depth did not largely degrade the prediction results as compared with the simulation results with the temporally changing boundary layer. It is, therefore, concluded that the model is practical, considering the limited input data in the operational mode. However, it was also pointed out that the parameterization for the horizontal and vertical diffusion processes used in the present model enhanced the growth of plume. The improvement of input data resolution in time and space caused further dispersion of tracer deterministically. These resulted in the underestimation of the maximum concentration and the unfocussed concentration distribution map although the mean concentration was predicted fairly well.  相似文献   

2.
As part of the European Tracer Experiment (ETEX) two successful atmospheric experiments were carried out in October and November, 1994. Perfluorocarbon (PFC) tracers were released into the atmosphere in Monterfil, Brittany, and air samples were taken at 168 stations in 17 European countries for 72 h after the release. Upper air tracer measurements were made from three aircraft. During the first experiment a westerly air flow transported the tracer plume north-eastwards across Europe. During the second release the flow was eastwards. The results from the ground sampling network allowed the determination of the cloud evolution as far as Sweden, Poland and Bulgaria. This demonstrated that the PFT technique can be successfully applied in long-range tracer experiments up to 2000 km. Typical background concentrations of the tracer used are around 5–7 fl ?-1 in ambient air. Concentrations in the plume ranged from 10 to above 200 fl/?-1. The tracer release characteristics, the tracer concentrations at the ground and in upper air, the routine and additional meteorological observations at the ground level and in upper air, trajectories derived from constant-level balloons and the meteorological input fields for long-range transport models are assembled in the ETEX database. The ETEX database is accessible via the Internet. Here, an overview is given of the design of the experiment, the methods used and the data obtained.  相似文献   

3.
A series of backscatter Lidar measurements were made around a bio-waste power station at Eye in Suffolk over a period of 10 days in May 1999. These measurements were supplemented with bag samples of SF6 tracer, analysed on site using gas chromatography with an electron capture detector. Despite problems with contamination, a detection limit of 20 ppt was eventually achieved and this permitted useful plume measurements from a release rate of 1–2 l min−1. Concentration/flux ratios were estimated from the Lidar measurements using an integral technique. Of the Lidar runs obtained, 24 were coincident with a tracer release. After allowing for the background of both aerosol and tracer, it was apparent that the independent calibrations of concentration/flux ratio from Lidar or tracer agreed with each other to within 20–60%. This permits the Lidar scans to be used to estimate peak near-ground concentrations, though because of various technical difficulties (poor alignment, background sources of aerosol, or an inconvenient wind direction) this cannot always be achieved. Besides giving confidence in the Lidar calibration, the tracer measurements were valuable in permitting aerosol from the stack to be distinguished from aerosol from fugitive sources. Meteorological parameters were logged simultaneously with the dispersion measurements. These parameters included conventional means of wind speed and direction, temperature, humidity and insolation, and also micrometeorological measurements of turbulence and of turbulent fluxes. The Lidar was used to estimate wind speed and direction at plume height and the boundary layer depth and cloud-base where possible. Source emission characteristics were also logged.  相似文献   

4.
This paper presents results from a series of numerical experiments designed to evaluate operational long-range dispersion model simulations, and to investigate the effect of different temporal and spatial resolution of meteorological data from numerical weather prediction models on these simulations. Results of Lagrangian particle dispersion simulations of the first tracer release of the European Tracer Experiment (ETEX) are presented and compared with measured tracer concentrations. The use of analyzed data of higher resolution from the European Center for Medium-Range Weather Forecasts (ECMWF) model produced significantly better agreement between the concentrations predicted with the dispersion model and the ETEX measurements than the use of lower resolution Navy Operational Global Atmospheric Prediction System (NOGAPS) forecast data. Numerical experiments were performed in which the ECMWF model data with lower vertical resolution (4 instead of 7 levels below 500 mb), lower temporal resolution (12 h instead of 6 h intervals), and lower horizontal resolution (2.5° instead of 0.5°) were used. Degrading the horizontal or temporal resolution of the ECMWF data resulted in decreased accuracy of the dispersion simulations. These results indicate that flow features resolved by the numerical weather prediction model data at approximately 45 km horizontal grid spacing and 6 h time intervals, but not resolved at 225 km spacing and 12 h intervals, made an important contribution to the long-range dispersion.  相似文献   

5.
A tracer model, the DREAM, which is based on a combination of a near-range Lagrangian model and a long-range Eulerian model, has been developed. The meteorological meso-scale model, MM5V1, is implemented as a meteorological driver for the tracer model. The model system is used for studying transport and dispersion of air pollutants caused by a single but strong source as, e.g. an accidental release from a nuclear power plant. The model system including the coupling of the Lagrangian model with the Eulerian model are described. Various simple and comprehensive parameterizations of the mixing height, the vertical dispersion, and different meterological input data have been implemented in the combined tracer model, and the model results have been validated against measurements from the ETEX-1 release. Several different statistical parameters have been used to estimate the differences between the parameterizations and meterological input data in order to find the best performing solution.  相似文献   

6.
Experiments in a neutrally stable wind tunnel boundary layer were made for two-dimensional (quasi-line) sources of carbon dioxide dispersing over two types of uniformly spaced (billboard) surface roughness elements. Velocity and concentration measurements were made with each surface roughness over a wide range of source Richardson number by varying carbon dioxide release rate and wind speed. Concentration measurements were made with a FID gas analyzer using an ethane tracer in the source gas, and velocity measurements were made with independent LDV and HWA systems. For each surface roughness, this paper describes the wind tunnel boundary layer and presents alongwind and vertical concentration profiles in the gas plume. Vertical velocity and concentration profiles were measured at selected downwind distances, and the profiles were integrated to confirm the consistency of the measurements with the mass of carbon dioxide released. The data are intended for development of improved vertical turbulent entrainment correlations for use in dense gas dispersion models applied to hazardous chemical consequence analyses.  相似文献   

7.
The concept of the urban roughness sublayer is discussed and this lowest atmospheric layer over a rough surface is shown to have a non-negligible vertical extension over typical urban surfaces. The existing knowledge on the turbulence and flow structure within an urban roughness sublayer is reviewed, focusing on the height dependence of turbulent fluxes and a scaling approach for turbulence statistics, such as velocity variances, in the above-roof part of the roughness sublayer. Finally, the implication of this turbulence and flow structure upon dispersion characteristics is investigated. The most prominent difference of explicitly taking into account the roughness sublayer in a dispersion simulation (as compared to assuming a `constant flux layer') is a clearly enhanced ground level concentration far downwind from the source. For the example of a tracer release experiment over a (sub) urban surface (Copenhagen) it is shown that introducing the roughness sublayer clearly improves the model performance.  相似文献   

8.
Aircraft measurements of air pollutants were made to investigate the characteristic features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26–27 April and 7–10 November in 1998, and 9–11 April and 19 June in 1999, together with aerosol measurements at the Taean background station in Korea. The overall mean concentrations of SO2, O3 and aerosol number in the boundary layer for the observation period ranged 0.1–7.4 ppb 32.1–64.1 ppb and 1.0–143.6 cm−3, respectively. It was found that the air mass over the Yellow Sea had a character of both the polluted continental air and clean background air, and the sulfur transport was mainly confined in the atmospheric boundary layer. The median of SO2 concentration within the boundary layer was about 0.1–2.2 ppb. However, on 8 November, 1998, the mean concentrations of SO2 and aerosol number increased up to 7.4 ppb and 109.5 cm−3, respectively, in the boundary layer, whereas O3 concentration decreased remarkably. This enhanced SO2 concentration occurred in low level westerly air stream from China to Korea. Aerosol analyses at the downstream site of Taean in Korea showed 2–3 times higher sulfate concentration than that of other sampling days, indicating a significant amount of SO2 conversion to non sea-salt sulfate during the long-range transport.  相似文献   

9.
A series of laboratory tracer migration experiments in a single rock fracture have been performed, and the breakthrough curves have been interpreted using mathematical modelling. Discrepancies were observed between the experimental data and the predictions made using a simple advection-dispersion model. The potential reasons for these discrepancies have been investigated by applying more complex models: one model incorporates channelling of flow within the fracture, the other couples dispersion and advection in the fracture with rock-matrix diffusion. It is concluded that chanelling of flow can adequately explain the observed spreading behaviour; rock-matrix diffusion is not a significant mechanism influencing transport in these experiments.  相似文献   

10.
A method for calculating the dispersion of plumes in the atmospheric boundary layer is presented. The method is easy to use on a routine basis. The inputs to the method are fundamental meteorological parameters, which act as distinct scaling parameters for the turbulence. The atmospheric boundary layer is divided into a number of regimes. For each scaling regime we suggest models for the dispersion in the vertical direction. The models directly give the crosswind-integrated concentrations at the ground, xy, for nonbuoyant releases from a continuous point source. Generally the vertical concentration profile is proposed to be other than Gaussian. The lateral concentration profile is always assumed to be Gaussian, and models for determining the lateral spread σy are proposed. The method is limited to horizontally homogeneous conditions and travel distances less than 10km. The method is evaluated against independent tracer experiments over land. The overall agreement between measurements and predictions is very good and better than that found with the traditional Gaussian plume model.  相似文献   

11.
Many towns and cities consist of similarly sized buildings in relatively regular arrangements with smaller scale roughness elements such as roofs, chimneys and balconies. The objective of this study is to investigate how small scale roughness elements modify the influence of the large scale organized roughness on the dispersion of a passive scalar in a turbulent boundary layer. Wind tunnel experiments were performed using a passive tracer released from a line source and concentration profiles were measured with a Flame Ionisation Detector. The measurements are compared with numerical solutions of the advection–diffusion equation.The results show that decreasing the cavity aspect ratio increases the turbulent vertical mass fluxes, and that the small scale roughness enhances these fluxes, but only in the skimming flow regime. Numerical simulations showed that outside the roughness sub-layer (RSL) the changes in surface roughness could be accounted for by a simple variation of the friction velocity, but inside the RSL the spatial variability of the flow imposed by the roughness elements has much more influence. A simple model for a spatially averaged dispersion coefficient in the RSL has been developed and is shown to agree satisfactorily with the concentrations measured in these experiments.  相似文献   

12.
Following the release of radionuclides from the Chernobyl power plant accident, a long-range transport and deposition model is used to describe the plume dispersion over Europe. The aim of this study is the validation of a fast Lagrangjan model and a better understanding of the relative impact of some mechanisms, such as the initial plume rise. Comparisons between results and 137Cs measurement activity are discussed according to spatial and temporal variations. It is shown that many measurements can be explained only if the initial plume rise taken at 925, 850 and 700mb is considered.  相似文献   

13.
This paper validates trajectories calculated from ECMWF analyses against the tracks of constant volume balloons (CVBs) released during the European tracer experiment (ETEX). The altitudes of the calculated trajectories were adjusted to the altitudes of the respective balloons in short intervals to allow direct comparisons. The agreement between the calculated trajectories and the balloon tracks was very good for the first experiment (individual errors from 1 to 26%, average 15%), and excellent (errors from 2 to 11%, average 6%) for the second one. The agreement for the second experiment was probably partly better because the CVBs travelled above the planetary boundary layer, but the small errors also indicate that the ECMWF fields of the horizontal wind were of exceptionally good quality in the second experiment. This is in sharp contrast to the results of the dispersion models which all failed in the prediction of the perfluorocarbon tracer dispersion for the second experiment. A likely explanation for this is that vertical motions, possibly on small scales, were not correctly captured by the ECMWF analyses, but it is not possible to clarify this with the CVB data.  相似文献   

14.
The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community.The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions.The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.  相似文献   

15.
The results of 35 Individual SF6 tracer tests conducted in Norway during 1978 demonstrate the applicability of tracer techniques to the study of a wide variety of pollutant transport problems found in the primary aluminum industry. Tracer methods were employed to determine the efficiency of the pollutant control system over a single reduction cell under a variety of operating conditions. Two tests conducted during normal operation gave efficiencies equal to 100 ±19% and 79 ± 12%, while a test performed during the occurrence of an anode effect yielded an efficiency equal to 66 ± 22%.

Tracer investigations of flow in the wake of a smelter hall indicated that between 1 % and 11 % of secondary, roof-top emissions can become entrained in the recirculation cavity and reenter the hall through the ventilation fresh air supply. These reentry rates were observed for release heights as high as 8 m above the existing roof exhaust duct. Tracer dispersion data collected within 20 building heights of the smelter agreed very well with extrapolations of McEIroy- Pooler dispersion curves for an urban area. Dispersion curves determined from a previous wind tunnel study of flow downwind of an isolated building underestimated dispersion downwind of the vs.melter complex.

The total fluoride mass flow rate measured downwind of a smelter during wet, foggy conditions indicated that wet removal rates of fluorides are in the range 3.2 × 10?4/s to 6.4 × 10?4/s. Simulation of the source with several tracer point releases and simultaneous measurement of fluoride and tracer ground-level concentrations downwind of the smelter eliminated the need for measurements of vertical profiles of wind speed and fluoride concentration during the experiment.  相似文献   

16.
During the first European Tracer Experiment (ETEX) tracer gas was released from a site in Brittany, France, and subsequently observed over a range of 2000 km. Hourly measurements were taken at the National Environmental Research Institute (NERI) located at Risø, Denmark, using two measurement techniques. At this location, the observed concentration time series shows a double-peak structure occurring between two and three days after the release. By using the Danish Emergency Response Model of the Atmosphere (DERMA), which is developed at the Danish Meteorological Institute (DMI), simulations of the dispersion of the tracer gas have been performed. Using numerical weather-prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF) by DERMA, the arrival time of the tracer is quite well predicted, so also is the duration of the passage of the plume, but the double-peak structure is not reproduced. However, using higher-resolution data from the DMI version of the HIgh Resolution Limited Area Model (DMI-HIRLAM), DERMA reproduces the observed structure very well. The double-peak structure is caused by the influence of a mesoscale anti-cyclonic eddy on the tracer gas plume about one day earlier.  相似文献   

17.
Three Lagrangian experiments were conducted during IGAC's second aerosol characterization experiment (ACE-2) in the area between Portugal, Tenerife and Madeira in June/July 1997. During each Lagrangian experiment, a boundary layer air mass was followed for about 30 h, and the temporal evolution of its chemical and aerosol composition was documented by a series of vertical profiles and horizontal box pattern flown by the Meteorological Research Flight research aircraft Hercules C130. The wealth of observational data that has been collected during these three Lagrangian experiments is the basis for the development and testing of a one-dimensional Lagrangian boundary layer model with coupled gas, aqueous, and aerosol phase chemistry. The focus of this paper is on current model limitations and strengths. We show that the model is able to represent the dynamical and chemical evolution of the marine boundary layer, in some cases requiring adjustments of the subsidence velocity and of the surface heat fluxes. Entrainment of a layer rich in ozone and carbon monoxide from a residual continental boundary layer into the marine boundary layer as well as in-cloud oxidation of sulphur dioxide by hydrogen peroxide are simulated, and coherent results are obtained, concerning the evolution of the small, presumably sulphate–ammonia aerosol mode.  相似文献   

18.
Field measurements were made of greenhouse gas emissions from a wastewater treatment system using open path monitoring with detection by FTIR spectroscopy. Emission rates were determined by the ratio technique using a sulfur hexafluoride tracer gas released from a line source. As a quality control check, a second tracer gas – ethylene – was released from various single point locations. This paper presents a comparison of the line-source and point-source tracer releases for approximating emissions from the area source. The two types of tracer release showed excellent agreement when both release points were two hundred meters from the FTIR beam path. Data for other release points also were comparable, once differences in vertical dispersion as a function of distance are taken into account.  相似文献   

19.
The Eulerian atmospheric tracer transport model MATCH (Multiscale Atmospheric Transport and Chemistry model) has been extended with a Lagrangian particle model treating the initial dispersion of pollutants from point sources. The model has been implemented at the Swedish Meteorological and Hydrological Institute in an emergency response system for nuclear accidents and can be activated on short notice to provide forecast concentration and deposition fields.The model has been used to simulate the transport of the inert tracer released during the ETEX experiment and the transport and deposition of 137Cs from the Chernobyl accident. Visual inspection of the results as well as statistical analysis shows that the extent, time of arrival and duration of the tracer cloud, is in good agreement with the observations for both cases, with a tendency towards over-prediction for the first ETEX release. For the Chernobyl case the simulated deposition pattern over Scandinavia and over Europe as a whole agrees with observations when observed precipitation is used in the simulation. When model calculated precipitation is used, the quality of the simulation is reduced significantly and the model fails to predict major features of the observed deposition field.  相似文献   

20.
In the May and June of 1998, field measurements were taken at a site near the Usery Pass Recreation Area, ∼27 miles from the downtown Phoenix area, overlooking Phoenix and Mesa, Arizona. This site was selected to examine the impacts of the Phoenix urban plume on the Usery Pass Recreation Area and surrounding regions. Data were obtained for ultraviolet-B (UVB) radiation, nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), ozone (O3), and carbon monoxide (CO). Nocturnal plumes of NO2 (in tens of ppb), observed near midnight, were correlated with CO and anti-correlated with O3. This behavior was consistent with the titration of locally generated NO by boundary layer O3 to form the nighttime NO2 plumes that were subsequently transported into the Usery Pass Recreation area. Nitrate radical (NO3) production rates were calculated to be very high on the edges of these nocturnal plumes. Examination of O3 and PAN data also indicates that Phoenix is being affected by long-range transport of pollutants from the Los Angeles to San Diego areas. A regional smoke episode was observed in May, accompanied by a decrease in UVB of factor of two and a decrease in O3 and an increase in methyl chloride. Low level back trajectories and chemical evidence confirm that the smoke event originated in northern Mexico and that the reduced O3 levels observed at Usery Pass could be partially due to reduced photolysis rates caused by carbonaceous soot aerosols transported in the smoke plume. The results are discussed with regard to potential effects of local pollution transport from the Phoenix air basin as well as an assessment of the contributions from long-range transport of pollutants to the background levels in the Phoenix-Usery Pass area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号