首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

2.
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates.  相似文献   

3.
The sorption of volatile organic compounds (VOCs) by different building materials can significantly affect VOC concentrations in indoor environments. In this paper, a new model has been developed for simulating VOC sorption and desorption rates of homogeneous building materials with constant diffusion coefficients and material–air partition coefficients. The model analytically solves the VOC sorption rate at the material–air interface. It can be used as a “wall function” in combination with more complex gas-phase models that account for non-uniform mixing to predict sorption process. It can also be used in conjunction with broader indoor air quality studies to simulate VOC exposure in buildings.  相似文献   

4.
The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

5.
Nalli S  Cooper DG  Nicell JA 《Chemosphere》2006,65(9):1510-1517
The commonly used plasticizers di-ethylhexyl phthalate (DEHP) and di-ethylhexyl adipate (DEHA) are known to partially degrade in the presence of soil microorganisms, such as Rhodococcus rhodochrous, releasing persistent and toxic metabolites. The metabolites adipic acid and 2-ethylhexanol were both shown to inhibit growth of the degrading microbe. 2-Ethylhexanol enhanced the activity of ethanol dehydrogenase - an enzyme involved in its metabolism - but the activity of this enzyme was inhibited by adipic acid. The metabolite usually seen in the highest concentrations - 2-ethylhexanoic acid - did not exhibit any evidence of inhibition. It was shown that the high concentration of this metabolite was due to the inability of R. rhodochrous to degrade it. Comparisons with other small carboxylic acids supported the argument that the ethyl branch was the reason for the resistance of 2-ethylhexanoic acid to degradation. The hydrophobicity of the cell surface was shown to be a factor in plasticizer degradation. The primary carbon source could be either water-soluble or hydrophobic and a hydrophobic substrate led to a cell surface that attracted the plasticizer and facilitated degradation. The most hydrophobic of the plasticizers, DEHP, was particularly sensitive to this effect.  相似文献   

6.
Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution.  相似文献   

7.
Abstract

The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25% relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

8.
The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25%) relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

9.
Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37 degrees C) or cold (22 degrees C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered.  相似文献   

10.
Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37 degrees C) or cold (22 degrees C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered.  相似文献   

11.
Residents in neighborhoods near a service station and/or major roadway would be expected to be exposed to elevated ambient volatile organic compound (VOC) levels compared to those further away from such source(s). We confirmed this and examined whether the anticipated high outdoor levels near a service station and/or major roadway outweighed the indoor levels as a factor for the exposure of nearby residents. Unlike the outdoor air concentrations, neither the indoor air nor breath concentrations were different for the two residential zones tested. The outdoor concentrations were higher during the daytime than at night, however, the indoor air and breath concentrations showed no difference between the two periods. The elevated outdoor levels nearby service stations were not identified as a major contributor to the exposure of housewives living in close proximity. Instead, it appeared that the indoor air levels were the major contributor to housewives’ exposure in both residential zones. This was further supported by the finding that the indoor levels were actually higher than the outdoor levels, and that there was a significant correlation between the indoor and breath levels.  相似文献   

12.
It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.  相似文献   

13.
Abstract

Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC‐odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ‐I model and a MJ‐II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ‐I model, manure moisture movement was negligible, whereas in the MJ‐II model, time‐dependent indoor air concentrations was a function of constant manure moisture contents and steady‐state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC‐odors of p‐cresol, toluene, and p‐xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ‐I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.  相似文献   

14.
This study was performed to investigate the possible sources as well as seasonal and diurnal variations of indoor air pollutants in widely used four different environments (house, office, kindergarten, and primary school) in which people spend most of their time. Bioaerosol levels and species, volatile organic compound (VOC) levels, and PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) levels were determined in different parts of these environments in parallel with outdoor sampling. Air pollution samplings were carried out in each microenvironment during five subsequent days in both winter and summer in Ankara, Turkey. The results indicated that bioaerosol, VOC, and PM2.5 levels were higher in the winter than in the summer. Moreover, PM2.5 and bioaerosol levels showed remarkable daily and diurnal variations, whereas a good correlation was found between the VOC levels measured in the morning and in the afternoon. Bacteria levels were, in general, higher than fungi levels. Among the VOCs, toluene was the most predominant, whereas elevated n-hexane levels were also observed in the kindergarten and the primary school, probably due to the frequent wet cleaning during school days. According to factor analysis, several factors were found to be significantly influencing the indoor air quality (IAQ), and amongst them, VOC-based products used indoors ranked first. The overall results indicate that grab sampling in naturally ventilated places may overestimate or underestimate the IAQ due to the inhomogeneous composition of indoor air caused by irregular exchanges with the outdoor air according to the season and/or occupants' habits.

Implications Seasonal and diurnal variations of VOCs, PM2.5, bioaerosols in house, office, and schools were observed, in which PM2.5 and bioaeorosols showed marked both intra- and interday variability, but VOCs did not. VOC-containing products were the most common source of air pollutants affecting the indoor air quality. External factors affecting the indoor air quality were season and indirectly ventilation. A grab sample cannot be representative in evaluating the air quality of a naturally ventilated environment precisely.  相似文献   

15.
BACKGROUND, AIMS AND SCOPE: The building materials are recognised to be major contributors to indoor air contamination by volatile organic compounds (VOCs). The improvement of the quality of the environment within buildings is a topic of increasing research and public interest. Legislation in preparation by the European Commission may induce, in the near future, European Union Member States to solicit the industries of paints, varnishes and flooring materials for taking measures, in order to reduce the VOC emissions resulting from the use of their products. Therefore, product characterisation and information about the influence of environmental parameters on the VOC emissions are fundamental for providing the basic scientific information required to allow architects, engineers, builders, and building owners to provide a healthy environment for building occupants. On the other hand, the producers of coating building materials require this information to introduce technological alterations, when necessary, in order to improve the ecological quality of their products, and to make them more competitive. Studies of VOC emissions from wet materials, like paints and varnishes, have usually been conducted after applying the material on inert substrates, due to its non-adsorption and non-porosity properties. However, in real indoor environments, these materials are applied on substrates of a different nature. One aim of this work was to study, for the first time, the VOC emissions from a latex paint applied on concrete. The influence of the substrate (uncoated cork parquet, eucalyptus parquet without finishing and pine parquet with finishing) on the emissions of VOC from a water-based varnish was also studied. For comparison purposes, polyester film (an inert substrate) was used for both wet materials. METHODS: The specific emission rates of the major VOCs were monitored for the first 72 h of material exposure in the atmosphere of a standardized test chamber. The air samples were collected on Tenax TA and analysed using thermal desorption online with gas chromatography provided with both mass selective detection and flame ionisation detection. A double exponential model was applied to the VOC concentrations as a function of time to facilitate the interpretation of the results. RESULTS AND DISCUSSION: The varnish, which was introduced in the test chamber 23 h after the application of the last layer of material, emitted mainly glycolethers. Only primary VOCs were emitted, but their concentrations varied markedly with the nature of the substrate. The higher VOC concentrations were observed for the parquets of cork and eucalyptus, which indicated that they have a much higher porosity and, therefore, a higher power of VOC adsorption than the finished pine parquet (and polyester film). The paint was introduced in the chamber just after its application. Only primary VOCs were emitted (esters, phthalates, glycolethers and white spirit) but some compounds, like 2-(2-butoxyethoxy)ethanol and diethylphthalate, were only observed for paint/polyester, which suggested that they were irreversibly adsorbed by the paint/concrete. Compared with the inert substrate, the rate of VOC emissions was lower for concrete in the wet-stage (first hours after the paint application) but slightly higher later (dry-stage) as a consequence of desorption. CONCLUSIONS: As to varnish, the substrates without finishing, like cork and eucalyptus parquets, displayed a higher power of adsorption of VOCs than the pine parquet with finishing, probably because they have a higher porosity. As concerns paint, the total masses of VOCs emitted were lower for concrete than for polyester, indicating that concrete reduces the global VOC emissions from the latex paint. Concrete is seen to have a strong power of adsorption of VOCs. Some compounds, namely 2-(2-butoxyethoxy)ethanol, diethylphthalate and TEXANOL (this partially), were either irreversibly adsorbed by the concrete or desorbed very slowly (at undetected levels). A similar behaviour had not been reported for gypsum board, a paint substrate studied before. RECOMMENDATIONS AND OUTLOOK: The present data suggest that concrete may be a recommendable substrate for paint in an indoor environment. As the nature of the substrate conditions the rate and nature of VOC emissions from wet materials, it must be explicit when emissions from composite materials are reported, in order to allow comparisons and labelling of the product in terms of indoor air quality.  相似文献   

16.
In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts.  相似文献   

17.
Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants’ ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants’ rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.  相似文献   

18.
Human breath emissions of VOCs.   总被引:5,自引:0,他引:5  
The medical community has long recognized that humans exhale volatile organic compounds (VOCs). Several studies have quantified emissions of VOCs from human breath, with values ranging widely due to variation between and within individuals. The authors have measured human breath concentrations of isoprene and pentane. The major VOCs in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1,880 ppb), ethanol (13-1,000 ppb), methanol (160-2,000 ppb) and other alcohols. In this study, we give a brief summary of VOC measurements in human breath and discuss their implications for indoor concentrations of these compounds, their contributions to regional and global emissions budgets, and potential ambient air sampling artifacts. Though human breath emissions are a negligible source of VOCs on regional and global scales (less than 4% and 0.3%, respectively), simple box model calculations indicate that they may become an important (and sometimes major) indoor source of VOCs under crowded conditions. Human breath emissions are generally not taken into account in indoor air studies, and results from this study suggest that they should be.  相似文献   

19.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

20.
Hippelein M 《Chemosphere》2006,65(2):271-277
A multi-storey building with great diversity of room use was monitored after extensive renovation to remove mould growth secondary to a leaky roof. Tests for volatile organic compounds (VOC) with activated charcoal showed a successfully renovation. Solid phase microextraction (SPME) for detection of selected very volatile organic compounds (VVOCs) revealed indoor air concentrations ranging from 550 to 4,600 microg m(-3). The SPME technique also successfully detected emissions from working and building materials and documented the results of remedial measures in offices. The prior and current use of acetone, methyl acetate and 2-methylpentane within the building resulted in their elevated concentrations in other building floors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号