首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine–birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types—“birch forest-heath with mosses” and “meadow with low herbs”, while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.  相似文献   

2.
To estimate the effect of traffic emissions on the vegetation composition of coniferous forests near to motorways, three transects of 520 m length were studied by analysing vegetation composition, soil parameters and deposition data in the Munich-area, Southern Germany. The detected patterns suggest that motorways have an impact on the vegetation composition in the neighbourhood of roads. Depending on the wind direction, the influences of the motorways reaches up to 230 m on downwind side and up to 80 m on upwind side. The vegetation is mainly affected by the deposition of nitrogen deriving from fuel combustion and by basic substances added to road salt. By monitoring vegetation changes near to motorways, it is possible to estimate the areas where harmful alterations of the ecosystem can be expected.  相似文献   

3.

Vegetation coverage is an important parameter for affecting soil erosion and the physical and chemical properties of soil. To analyze the mutual influence between vegetation coverage and soil quality at different slope aspects in a reclaimed dump, fitting analyses were built between the normalized difference vegetation index and soil physical properties at each slope aspect. Twenty six quadrats were sampled in slope-platform alternate mode. Each quadrat was 10 m × 10 m. Vegetation index and soil physical properties were measured and calculated. Through curve fitting analysis, the results showed that soil bulk density has a negative correlation with the vegetation index on shady and half shady slopes, sunny slopes, and half sunny slopes. Soil porosity has a positive correlation with the vegetation index on shady and half shady slopes, sunny slope, and half sunny slope. The soil mass water content has a concave function relationship with the vegetation index on shady and half shady slopes and has a quadratic function relationship with the vegetation index on sunny and half sunny slopes, with the parabola moving upwards. The soil gravel content has a linear relationship with the vegetation index on shady and half shady slopes, and the image has a negative slope with a quadratic function relationship to the vegetation index on sunny slope and half sunny slope, with the parabola moving downwards. Due to differences among hydrothermal conditions, the relationship between vegetation coverage and soil quality indicators at different slope aspects is different; therefore, reasonable improvement of soil quality indicators on sunny and half sunny slopes could help plants to grow. These findings feed into a reference document that sets out how vegetation and soil quality may be improved in mining areas.

  相似文献   

4.
This investigation analyzes the particulate-bound mercury (PBM) compositions in soil and vegetation at a traffic sampling site in Taichung, Taiwan, during a sampling period from October to December, 2015. A direct mercury analyzer (DMA-80) was used to measure the particulate-bound mercury (PBM). A T-test was conducted to determine the mean differences between the PBM composition in soil and that in vegetation at the site. The results indicate that 1) the mean particulate-bound mercury compositions in soil and vegetation were the lowest in November, when the (mean OR average) wind speed was the highest (4.1 m/s); 2) Particulate-bound mercury compositions (PBM) in both soil and vegetation correlated weakly with temperature, humidity and wind speed; 3) T-test statistical results denoted that the PBM compositions did not significantly differ between soil and vegetation in the three-month sampling period.  相似文献   

5.
Strategies for including vegetation compartments in multimedia models   总被引:6,自引:0,他引:6  
Cousins IT  Mackay D 《Chemosphere》2001,44(4):643-654
The incentives for including vegetation compartments in multimedia Level I, II and III fugacity calculations are discussed and equations and parameters for undertaking the calculations suggested. Model outputs with and without vegetation compartments are compared for 12 non-ionic organic chemicals with a wide variety of physical-chemical properties. Inclusion of vegetation compartments is shown to have a significant effect on two classes of chemicals: (1) those that are taken up by atmospheric deposition and (2) those that are taken up by transpiration through the plant roots. It is suggested that uptake from the atmosphere is important for chemicals with logK(OA) greater than 6 and a logK(AW) of greater than -6. Plant uptake by transpiration is important for chemicals with logK(OW) less than 2.5 and a logK(AW) of less than -1. At logK(OA) > 9 atmospheric uptake is dominated by particle-bound deposition and the importance of partitioning to vegetation is largely dependent on the relative magnitude of the particle deposition velocities to soil and vegetation. These property ranges can be used to determine if a chemical will significantly partition to vegetation. If the chemical falls outside the property ranges of the two classes it will probably be unnecessary to include vegetation in models for assessing environmental fate. The amount of chemical predicted to partition to vegetation compartments in the model is shown to be highly sensitive to certain model assumptions. Further experimental research is recommended to obtain more reliable equations describing equilibrium partitioning and uptake/depuration kinetics.  相似文献   

6.
This study investigated the relation between vegetation reflectance and elevated concentrations of the metals Ni, Cd, Cu, Zn and Pb in river floodplain soils. High-resolution vegetation reflectance spectra in the visible to near-infrared (400-1350 nm) were obtained using a field radiometer. The relations were evaluated using simple linear regression in combination with two spectral vegetation indices: the Difference Vegetation Index (DVI) and the Red-Edge Position (REP). In addition, a multivariate regression approach using partial least squares (PLS) regression was adopted. The three methods achieved comparable results. The best R(2) values for the relation between metals concentrations and vegetation reflectance were obtained for grass vegetation and ranged from 0.50 to 0.73. Herbaceous species displayed a larger deviation from the established relationships, resulting in lower R(2) values and larger cross-validation errors. The results corroborate the potential of hyperspectral remote sensing to contribute to the survey of elevated metal concentrations in floodplain soils under grassland using the spectral response of the vegetation as an indicator. Additional constraints will, however, have to be taken into account, as results are resolution- and location-dependent.  相似文献   

7.
Water, soil, vegetation, and rodents were collected from three areas along the Las Vegas Wash, a watershed heavily contaminated with perchlorate. Perchlorate was detected at elevated concentrations in water, soil, and vegetation, but was not frequently detected in rodent liver or kidney tissues. Broadleaf weeds contained the highest concentrations of perchlorate among all plant types examined. Perchlorate in rodent tissues and vegetation was correlated with perchlorate concentrations in soil as expected, however rodent residues were not highly correlated with plant perchlorate concentrations. This indicates that soil may be a greater source, or a more constant source of perchlorate exposure in rodents than vegetation.  相似文献   

8.
Vegetation fire emissions and their impact on air pollution and climate   总被引:1,自引:0,他引:1  
Gaseous and particulate emissions from vegetation fires substantially modify the atmospheric chemical composition, degrade air quality and can alter weather and climate. The impact of vegetation fire emissions on air pollution and climate has been recognised in the late 1970s. The application of satellite data for fire-related studies in the beginning of the 21th century represented a major break through in our understanding of the global importance of fires. Today the location and extent of vegetation fires, burned area and emissions released from fires are determined from satellite products even though many uncertainties persist. Numerous dedicated experimental and modeling studies contributed to improve the current knowledge of the atmospheric impact of vegetation fires. The motivation of this paper is to give an overview of vegetation fire emissions, their environmental and climate impact, and what improvements can be expected in the near future.  相似文献   

9.
Environmental Science and Pollution Research - Climate change affects the change of vegetation, and the analysis of vegetation change and its drivers in different globe climate zones is important...  相似文献   

10.
Environmental Science and Pollution Research - Surface coal mining causes vegetation disturbance while providing an energy source. Thus, much attention is given to monitoring the vegetation of...  相似文献   

11.
The Arctic land area has warmed by >1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980–2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

12.
ABSTRACT

This paper presents a methodology for the development of a high-resolution (30-m), standardized biogenic volatile organic compound (BVOC) emissions inventory and a subsequent application of the methodology to Tucson, AZ. The region's heterogeneous vegetation cover cannot be modeled accurately with low-resolution (e.g., 1-km) land cover and vegetation information. Instead, local vegetation data are used in conjunction with multispectral satellite data to generate a detailed vegetation-based land-cover database of the region. A high-resolution emissions inventory is assembled by associating the vegetation data with appropriate emissions factors. The inventory reveals a substantial variation in BVOC emissions across the region, resulting from the region's diversity of both native and exotic vegetation.

The importance of BVOC emissions from forest lands, desert lands, and the urban forest changes according to regional, metropolitan, and urban scales. Within the entire Tucson region, the average isoprene, monoterpene, and  相似文献   

13.
Tareq SM  Tanoue E  Tsuji H  Tanaka N  Ohta K 《Chemosphere》2005,59(11):1655-1665
Evidence of changing vegetation in the tropical wetland (Rawa Danau, west Java, Indonesia) over the past 7428 years is illustrated by elemental (soot) carbon (EC) and n-alkane composition of sedimentary geolipids. In this study, vegetation changes and relevant controlling factors (e.g. forest fire and climate change) were documented on a decadal to centennial scale. The n-alkane composition that changes with depth might record changes in sources of organic matter (OM) in the wetland. The presence of EC (0.01–0.24% of organic carbon: OC) during late (0–1700 cal. year BP) and mid (3500–4500 cal. year BP) Holocene (at depths 0–50 cm, and 160–210 cm) indicated that large-scale forest fires severely affected the tropical vegetation. The hydrocarbon indices (CPI: carbon preference index, MCN: mean carbon number, and HVI: hydrocarbon vegetation index) significantly correlated with one another while a comparison of EC profile with the profiles of hydrocarbon indices indicated that n-alkane composition of the geolipid in lake sediment could record signatures of changes in catchment vegetation. Forest fire and vegetation changes might be related to regional climatic shifts relating to ENSO activity as well as being influenced by human influences.  相似文献   

14.
We have estimated the stocks of carbon in vegetation and soil in northeast China based on data for 122 plots from the fourth national forest inventory, and for 388 soil profiles from the second national soil survey. The techniques of Geographic Information System (GIS) have been used to extrapolate site-specific estimates of vegetation and soil organic carbon to the entire area of northeast China. Our estimate indicates that the amount of carbon in vegetation and soil for the region are 2.81 PgC (10(15) g C) and 26.43 PgC, respectively, and that the area weighted average density of vegetation and soil organic carbon are 22.7 MgC/ha and 212.7 MgC/ha, respectively. The eastern and northern parts of the region show much higher carbon storage than the rest of the region. Substantial spatial variations in vegetation and soil organic carbon across northeast China suggest that regional estimates on carbon stocks and fluxes should take into account these spatial variations. We suggest that the methodology developed can be used for the entire nation of China as well as other regions of the world.  相似文献   

15.
Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (?20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC–MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.  相似文献   

16.
Rose MT  Crossan AN  Kennedy IR 《Chemosphere》2008,72(7):999-1005
Field data shows that plants accelerate pesticide dissipation from aquatic systems by increasing sedimentation, biofilm contact and photolysis. In this study, a graphical model was constructed and calibrated with site-specific and supplementary data to describe the loss of two pesticides, endosulfan and fluometuron, from a vegetated and a non-vegetated pond. In the model, the major processes responsible for endosulfan dissipation were alkaline hydrolysis and sedimentation, with the former process being reduced by vegetation and the latter enhanced. Fluometuron dissipation resulted primarily from biofilm reaction and photolysis, both of which were increased by vegetation. Here, greater photolysis under vegetation arose from faster sedimentation and increased light penetration, despite shading. Management options for employing constructed wetlands to polish pesticide-contaminated agricultural runoff are discussed. The lack of easily fulfilled sub-models and data describing the effect of aquatic vegetation on water chemistry and sedimentation is also highlighted.  相似文献   

17.
Meneses M  Schuhmacher M  Domingo JL 《Chemosphere》2002,46(9-10):1393-1402
The vegetation and soil levels of the 17 polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) toxic congeners were calculated by means of a vegetation and a soil model, respectively. Both models predicted the levels of the 17 PCDD/F congeners in quite good agreement with the observed results although the soil model was more accurate than the vegetation model. Four different pathways of contribution to the vegetation concentrations were taken into account: vapour-phase absorption, dry particle deposition, wet particle deposition and uptake by root. The most important pathway was the vapour-phase absorption and the less was the uptake by root. In the soils model four pathways were considered: background soil concentration, dry particle deposition, wet particle deposition and uptake by root. After the background concentration, the most important pathway was the wet deposition.  相似文献   

18.
For assessing the efficacy of a specific form of the National Ambient Air Quality Standard for 03, those exposure patterns that result in vegetation and human health effects must be identified. For vegetation, it has been found that the higher hourly average concentrations should be weighted more than the lower concentrations. Controlled human exposure work supports the suggestion that concentration may be more important than exposure duration and ventilation rates. It has been indicated in the literature that the current form of the federal 03 standard may not be appropriate for protecting vegetation and human health from 03 exposures. The proposed use of the cumulative index alone as a form of the standard may not provide sufficient protection to vegetation. An extended-period average index, such as a daily maximum 8-hour average concentration, may not be appropriate to protect human health because of the reduced ability to observe differences among hourly 03 concentrations exhibited within exposure regimes. For both vegetation and human health effects research, additional experimentation is required to identify differences in responses that occur when ambient-type exposure regimes are applied. Any standard promulgated to protect vegetation and human health from 03 exposures should consider combining cumulative exposure indices with other parameters so that those unique exposures that have the potential for eliciting an adverse effect can be adequately described.  相似文献   

19.
This paper presents a methodology for the development of a high-resolution (30-m), standardized biogenic volatile organic compound (BVOC) emissions inventory and a subsequent application of the methodology to Tucson, AZ. The region's heterogeneous vegetation cover cannot be modeled accurately with low-resolution (e.g., 1-km) land cover and vegetation information. Instead, local vegetation data are used in conjunction with multispectral satellite data to generate a detailed vegetation-based land-cover database of the region. A high-resolution emissions inventory is assembled by associating the vegetation data with appropriate emissions factors. The inventory reveals a substantial variation in BVOC emissions across the region, resulting from the region's diversity of both native and exotic vegetation. The importance of BVOC emissions from forest lands, desert lands, and the urban forest changes according to regional, metropolitan, and urban scales. Within the entire Tucson region, the average isoprene, monoterpene, and OVOC fluxes observed were 454, 248, and 91 micrograms/m2/hr, respectively, with forest and desert lands emitting nearly all of the BVOCs. Within the metropolitan area, which does not include the forest lands, the average fluxes were 323, 181, and 70 micrograms/m2/hr, respectively. Within the urban area, the average fluxes were 801, 100, and 100 micrograms/m2/hr, respectively, with exotic trees such as eucalyptus, pine, and palm emitting most of the urban BVOCs. The methods presented in this paper can be modified to create detailed, standardized BVOC emissions inventories for other regions, especially those with spatially complex vegetation patterns.  相似文献   

20.
Global change affects alpine ecosystems by, among many effects, by altering plant distributions and community composition. However, forecasting alpine vegetation change is challenged by a scarcity of studies observing change in fixed plots spanning decadal-time scales. We present in this article a probabilistic modeling approach that forecasts vegetation change on Niwot Ridge, CO using plant abundance data collected from marked plots established in 1971 and resampled in 1991 and 2001. Assuming future change can be inferred from past change, we extrapolate change for 100 years from 1971 and correlate trends for each plant community with time series environmental data (1971–2001). Models predict a decreased extent of Snowbed vegetation and an increased extent of Shrub Tundra by 2071. Mean annual maximum temperature and nitrogen deposition were the primary a posteriori correlates of plant community change. This modeling effort is useful for generating hypotheses of future vegetation change that can be tested with future sampling efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号