首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200mg kg(-1) Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8weeks using NH(4)Cl (water-soluble plus exchangeable, WE-As), NH(4)F (Al-As), NaOH (Fe-As), and H(2)SO(4) (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8weeks of plant growth, the Al-As and Fe-As fractions were significantly (p<0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p=0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic.  相似文献   

2.
To identify the role of the forest floor in arsenic (As) biogeochemistry, concentrations and fluxes of inorganic and organic As in throughfall, litterfall and forest floor percolates at different layers were investigated. Nearly 40% of total As(total) input (5.3g Asha(-1)yr(-1)) was retained in Oi layer, whereas As(total) fluxes from Oe and Oa layers exceeded the input by far (10.8 and 20g Asha(-1)yr(-1), respectively). Except dimethylarsinic acid (DMA), fluxes of organic As decreased with depth of forest floor so that <10% of total deposition (all <0.3g Asha(-1)yr(-1)) reached the mineral soil. All forest floor layers are sinks for most organic As. Conversely, Oe and Oa layers are sources of As(total), arsenite, arsenate and DMA. Significant correlations (r>/=0.43) between fluxes of As(total), arsenite, arsenate or DMA and water indicate hydrological conditions and adsorption-desorption as factors influencing their release from the forest floor. The higher net release of arsenite from Oe and Oa and of DMA from Oa layer in the growing than dormant season also suggests microbial influences on the release of arsenite and DMA.  相似文献   

3.
Inorganic arsenic (InAs) is a ubiquitous metalloid that has been shown to exert multiple adverse health outcomes. Urinary InAs and its metabolite concentration has been used as a biomarker of arsenic (As) exposure in some epidemiological studies, however, quantitative relationship between daily InAs exposure and urinary InAs metabolites concentration has not been well characterized. We collected a set of 24-h duplicated diet and spot urine sample of the next morning of diet sampling from 20 male and 19 female subjects in Japan from August 2011 to October 2012. Concentrations of As species in duplicated diet and urine samples were determined by using liquid chromatography-ICP mass spectrometry with a hydride generation system. Sum of the concentrations of urinary InAs and methylarsonic acid (MMA) was used as a measure of InAs exposure. Daily dietary InAs exposure was estimated to be 0.087 µg kg?1 day?1 (Geometric mean, GM), and GM of urinary InAs+MMA concentrations was 3.5 ng mL?1. Analysis of covariance did not find gender-difference in regression coefficients as significant (P > 0.05). Regression equation Log 10 [urinary InAs+MMA concentration] = 0.570× Log 10 [dietary InAs exposure level per body weight] + 1.15 was obtained for whole data set. This equation would be valuable in converting urinary InAs concentration to daily InAs exposure, which will be important information in risk assessment.  相似文献   

4.
A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 μg L?1 As(III), 246 μg L?1 As(V), 151 μg L?1 MMA, and 202 μg L?1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 μg L?1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III).  相似文献   

5.
6.
Total and inorganic arsenic in Antarctic macroalgae   总被引:2,自引:0,他引:2  
The Antarctic region offers unparalleled possibilities of investigating the natural distribution of metals and metalloids, such as arsenic. Total and inorganic As were analysed in nine species of Antarctic macroalgae collected during the 2002 summer season in the Potter Cove area at Jubany-Dallmann Station (South Shetland Islands, Argentinian Base). Total As was determined by inductively coupled plasma-optical emission spectrometry after microwave-assisted acid digestion. Inorganic As was determined by acid digestion, solvent extraction, flow injection-hydride generation-atomic absorption spectrometry. Total As ranged from 5.8 microg g(-1) dry weight (dw) (Myriogramme sp.) to 152 microg g(-1)dw (Himantothallus grandifolius). Total As concentrations were higher in Phaeophytes (mean+/-SD: 71+/-44 microg g(-1)dw) than in Rhodophytes (mean+/-SD: 15+/-11 microg g(-1)dw). Inorganic As ranged from 0.12 microg g(-1) (Myriogramme sp.) to 0.84 microg g(-1)dw (Phaeurus antarcticus). The percentage of inorganic As with respect to total As was 0.7 for Phaeophytes, but almost 4 times higher for Rhodophytes (2.6). The work discusses possible causes for the presence of As in marine organisms in that pristine environment.  相似文献   

7.
Arsenic in the inorganic and organic forms was analyzed in species of marine macro-algae growing in the South Atlantic Ocean. Species of the genera Lessonia, Gigartina, Adenocystis, Leathesia and Colpomenia were investigated. Arsenic accumulation was found in all species studied. Total As content ranged from 5.3 to 56.9 microg As g(-1) and the levels of the inorganic forms ranged from 0.2 to 2.0 microg As g(-1). The complete analytical procedure was validated against a standard reference material (NBS, SRM 1572, citrus leaves) and the value obtained was in good agreement with the certified value. Some commercial seaweed products were also analyzed.  相似文献   

8.
9.
In order to characterize the different sources of exposure to arsenic (As), urinary excretion of total As, the sum of inorganic As+MMA+DMA determined by the hydride generation-atomic absorption spectrophotometry technique, and the species As(3), As(5), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine were determined in 49 workers at a steel foundry, with presumed occupational exposure to As, and 50 subjects from the general population, all males. No evidence of occupational exposure to As resulted from environmental monitoring performed in the foundry, although the analysis of minerals used as raw materials showed the presence of As, particularly in fossils and fine ores. The urinary concentrations of As(3), MMA, DMA, the sum of inorganic As+MMA+DMA and total As were not different in the two groups, while arsenobetaine appeared significantly higher in the controls than in the workers. The different species of urinary As were all significantly correlated. Urinary excretion of As(3) was associated with the consumption of mineral water and with residence in an industrial zone, while MMA, DMA, arsenobetaine, the sum of inorganic As+MMA+DMA and total As urinary excretion were associated with the consumption of crustaceans and/or shellfish 3 days or less before urine collection. Multiple regression analysis confirmed these results. In conclusion, in populations with a high consumption of seafood, living in areas characterized by coastal/marine As pollution, only speciation of As can identify a prevalent role of environmental sources, like the consumption of seafood contaminated by As, in determining urinary As excretion, and exclude an occupational origin of the exposure.  相似文献   

10.
Inorganic arsenic and trace elements in Ghanaian grain staples   总被引:1,自引:0,他引:1  
A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains; thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As.  相似文献   

11.
Variation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg−1), bacterial abundance (in order of 9 × 109 cell g−1 dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments. In fact, the relatively unpolluted deepwater sites and the coastal polluted site show large synchronous increases in bacterial densities linked to the anoxic conditions in the 1970s (lake eutrophication caused by external nutrient input) that subsequently increased the nutrient loading fluxes. These results show that the microbial activities response to natural or human-induced changing limnological conditions (e.g., nutrient supply, oxygen availability, redox conditions) constitutes a threat to the security of water resources, which in turn poses concerns for the world’s freshwater resources in the context of global warming and the degradation of water quality (oxygen depletion in the bottom water due to reduced deep waters mixing). Moreover, the accumulation of inorganic pollutants such as high mercury (methyl-mercury) concentration may represent a significant source of toxicity for sediment dwelling organisms.  相似文献   

12.
Li WX  Chen TB  Huang ZC  Lei M  Liao XY 《Chemosphere》2006,62(5):803-809
This study investigated the impacts of arsenic (As) on the chloroplast ultrastructure and calcium (Ca) distribution in Chinese brake (Pteris vittata L.) mainly by histochemical methods, with an emphasis on the possible function of Ca in As detoxification and accumulation in P. vittata. P. vittata was grown in an artificially contaminated soil added with different concentrations of Na(2)HAsO(4) (0, 100, 300 and 800 mg kg(-1) As dry soil) for 24 weeks in a greenhouse. The addition of As did not affect the chloroplast ultrastructure of young pinna, meanwhile most of the membrane systems of chloroplasts in mature pinna were severely damaged under high As condition. Calcium concentration in the fronds of P. vittata was not significantly affected by the addition of As, but Ca concentration in the mature pinna significantly increased by As addition, consistent with the position appearing As toxicity. When no As was added, most of calcium precipitates distributed around the inner membrane of vacuole. But when the pinna appeared plasmolysis, more calcium precipitates resided outside the cell membrane and bigger particles evenly distributed in the cytoplasm. All the results indicated that Ca had a close relation with As toxicity in P. vittata.  相似文献   

13.
A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption.  相似文献   

14.
Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land.  相似文献   

15.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   

16.
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (> 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (= 0.78, < 0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (< 0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.  相似文献   

17.

The iron (Fe) (hydro)oxides deposited around rice roots play an important role in arsenic (As) sequestration in paddy soils, but there is no systematic study on the relative importance of Fe (hydro)oxides on root surface and in rhizosphere soil in limiting As bioavailability. Twenty-seven rice genotypes were selected to investigate effects of Fe (hydro)oxides on As uptake by rice in an alkaline paddy soil. Results indicated that the As content was positively correlated with the Fe content on root surface, and most of As (88–97%) was sequestered by poorly crystalline and crystalline Fe (hydro)oxides in the alkaline paddy soil. The As sequestration by Fe (hydro)oxides on root surface (IASroot 16.8–25.0 mg As/(g Fe)) was much higher than that in rhizosphere (IASrhizo 1.4–2.0 mg As/(g Fe)); therefore, in terms of As immobilization, the Fe (hydro)oxides on root surface were more important than that in rhizosphere. However, the As content in brown rice did not have significant correlation with the As content on root surface but was significantly correlated (R2?=?0.43, P?<?0.05) with the partition ratio (PRAs?=?IASroot/IASrhizo) of As sequestration on root surface and in rhizosphere, which suggested that Fe (hydro)oxides on root surface did not play the controlling role in lowering As uptake, and the partition ratio PRAs would be a better indicator to evaluate effects of Fe (hydro)oxides around roots on As uptake by rice.

  相似文献   

18.
The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level (≥10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination.  相似文献   

19.
In the museum environment organic and inorganic chemicals can be found, which originate from both outside and inside the building. Many of the contaminants may cause adverse effects on works of art and human health, but in the past, pollution research in museums has focused on the protection of artifacts, while the risk assessment for humans has been neglected. Especially, the application of biocides leads to a conflict of interest: on the one hand cultural assets have to be protected against microorganisms, insects and rodents while on the other hand it is essential to provide healthy conditions for museum staff and visitors. It has recently been shown that the release of organic indoor pollutants from building products is one of the main reasons for deterioration of artifacts. In this work, we present the results of screening measurements on biocides in different locations of German museums. The major components that could be identified were DDT, PCP, lindane, methoxychlor, naphthalene, chlorinated naphthalenes, 1,4-dichlorobenzene, PCBs and arsenic. It is demonstrated that the application of chlorinated organic compounds and arsenic for preventive conservation is one of the prime reasons for indoor pollution in museums and provides a potential for exposure. However, the concentrations in air, dust and material are widely different and a health risk for humans has to be evaluated case by case.  相似文献   

20.
Pteris vittata was the first terrestrial plant known to hyperaccumulate arsenic (As). However, it is unclear how As hyperaccumulation influences nutrient uptake by this plant. P. vittata fern was grown in soil spiked with 0-500 mg As kg(-1) in the greenhouse for 24 weeks. The concentrations of essential macro- (P, K, Ca, and Mg) and micro- (Fe, Mn, Cu, Zn, B and Mo) elements in the fronds of different age were examined. Both macro- and micronutrients in the fronds were found to be within the normal concentration ranges for non-hyperaccumulators. However, As hyperaccumulation did influence the elemental distribution among fronds of different age of P. vittata. Arsenic-induced P and K enhancements in the fronds contributed to the As-induced growth stimulation at low As levels. The frond P/As molar ratios of 1.0 can be used as the threshold value for normal growth of P. vittata. Potassium may function as a counter-cation for As in the fronds as shown by the As-induced K increases in the fronds. The present findings not only demonstrate that P. vittata has the ability to maintain adequate concentrations of essential nutrients while hyperaccumulating As from the soil, but also have implications for soil management (fertilization in particular) of P. vittata in As phytoextraction practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号