首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Wang Z  Shan XQ  Zhang S 《Chemosphere》2002,46(8):1163-1171
Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.  相似文献   

2.
Biomonitoring programs to access the ecological integrity of freshwaters tend to rely exclusively on structural parameters. Here we evaluated stream ecological integrity using (a) benthic macroinvertebrate derived metrics and a biotic index as measures of structural integrity and (b) oak litter decomposition and associated fungal sporulation rates as measures of functional integrity. The study was done at four sites (S1, S2, S3 and S4) along a downstream increasing phosphorus and habitat degradation gradient in a small stream. The biotic index, invertebrate metrics, invertebrate and fungal communities' structure and sporulation rates discriminated upstream and downstream sites. Decomposition rates classified sites S4 and S2 as having a compromised ecosystem functioning. Although both functional and structural approaches gave the same results for the most impacted site (S4), they were complementary for moderately impacted sites (S2 and S3), and we therefore support the need for incorporating functional measures in evaluations of stream ecological integrity.  相似文献   

3.
Sulfur Is an essential element for plants and is normally taken up from soil In the sulfate form. S02 absorbed from the air also can supply S for plant nutrition. Plants are therefore dependent on an optimum S content, but deficiencies or excesses can result in deleterious effects. The Phytotoxicology Section has conducted numerous assessment surveys in rural, urban, or industrial locations in Ontario to determine the concentrations of S in plants and related effects. During the ten year period, 1968 to 1977, about 50,000 samples of vegetation and soil were collected and analyzed for S concentrations. The results of these analyses were examined with respect to natural background concentrations of S in foliage of 33 different species, and effects observed on plant life associated with excess concentrations of S. For example, in one situation 0.35% sulfur in foliage of trembling aspen trees was found to be the threshold level for injury to occur. Some of the industries surveyed for the degree and extent of S effects in their vicinity included pulp mills, power plants, iron concentrators, and gold, nickel, and copper smelters. In interpreting the results of S analyses in plant foliage for diagnostic purposes, consideration should be given also to the geographical location, the stage of growth of the plant, the relation of visible injuries to pollutant or biological causes, the S content of the soil, and S02 emission data for the area.  相似文献   

4.
Cyclodextrins (CDs), a class of cyclic oligosaccharide molecules containing a variety of chiral centre, are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. In this work, we selected three types of CDs, beta-CD and its two derivatives, randomly methylated beta-CD (RAMEB) and hydroxypropyl beta-CD (HP-beta-CD), to evaluate effects on toxicity of racemic fenoxaprop (rac-FA) and its R-enantiomer (R-FA) to freshwater alga Scenedesmus obliquus (S. obliquus) and their dissipation in S. obliquus suspension with and without CDs addition, respectively, in an attempt to get more detail about enantioselective behavior of fenoxaprop acid (FA) in the environment, using CDs as a remediation agent for FA and formulation additive for fenoxaprop-p-ethyl (FE). The significant difference between rac-FA and R-FA was not observed in their acute toxicity to S. obliquus and dissipation in S. obliquus suspension. RAMEB had no effect on either toxicity of FA to S. obliquus or dissipation of FA in S. obliquus suspension, and it also didn't change the extent of enantioselectivity in toxicity of FA to S. obliquus. But the addition of a certain amount of beta -CD and HP-beta -CD reduced the toxicity of FA to S. obliquus and increased dissipation of FA in S. obliquus suspension, as well as changed the enantioselectivity in toxicity of FA to S. obliquus. The results indicated beta-CD and HP-beta-CD could be used as a promising agent for remediation of aquatic contamination produced by FA, and RAMEB might be used as potential formulation additives for FE, the parent compound of FA, as RAMEB didn't decrease activity of R-FA and might be environmentally safer than the conventional additives.  相似文献   

5.
Hexabromocyclododecanes (HBCDs) are high production volume chemicals used as flame retardants for plastics and textiles. They are currently produced in quantities exceeding 20,000 t/y. Despite this fact, the correct stereochemistry of most HBCDs is still not known. Six stereocenters are formed during bromination of cyclododecatrienes, resulting in mixtures of different stereoisomers. Considering all elements of symmetry, 16 different stereoisomers including six pairs of enantiomers as well as 4 meso forms are possible theoretically. Recently, we isolated 8 of the 16 possible stereoisomers from a technical HBCD mixture and assigned their relative configurations. Herein, we report on the isolation of 6 enantiomerically pure alpha-, beta-, and gamma-HBCDs, obtained from preparative chiral-phase liquid chromatography, and we present their absolute configurations, which were determined from X-ray diffraction analysis. The absolute configuration of (-) alpha-HBCD was found to be (1R,2R,5S,6R,9R,10S), while the one of (+) beta-HBCD is assigned to (1S,2S,5S,6R,9S,10R), whereas the one of (-) gamma-HBCD corresponds to (1S,2S,5S,6R,9R,10S). The given structural information allows the unambiguous identification of the six most important HBCD stereoisomers, which typically account for more than 95% of technical HBCDs. In addition, we compared the solid-state conformations of racemic and enantiomerically pure alpha-, beta-, and gamma-HBCDs. In all cases, vicinal dibromides adopted a synclinal (sc) conformation with torsion angles of 69+/-6 degrees. A unique structural motive was common to all examined HBCD solid-state conformations. This conserved structure was described as an extended triple turn consisting of an arrangement of three pairs of synclinal and two antiperiplanar torsion angles.  相似文献   

6.
Environmental Science and Pollution Research - Investigating the responses of retention and output of sulfur (S) is significant to understand the impact of atmospheric S deposition on the S cycling...  相似文献   

7.
Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

8.
Environmental Science and Pollution Research - In this study, four systems (S1, S2, S3, and S4) were evaluated to determine whether basic oxygen furnace sludge (BOFS), mainly composed of Fe (84%,...  相似文献   

9.
提出了采用可产臭氧的高强球形紫外灯光解氧化硫化氢气体。考察了硫化氢初始浓度、湿度、含氧量、停留时间对硫化氢去除效率的影响。实验结果表明,硫化氢浓度在低浓度范围内,对硫化氢的去除效率可以达到99%以上。反应体系内气体湿度比含氧量对硫化氢的去除效率的影响更明显。气体湿度控制在45%~60%和反应停留时间控制在6~10s范围内为最佳。高强紫外球形灯处理硫化氢过程分别存在直接光解和臭氧氧化作用及两者的协同作用。  相似文献   

10.
In order to quantify the atmospheric nitrate and sulfate deposition and to investigate factors related to the variability of deposition during 1983 and 1984, precipitation samples from five different meteorological stations in Schleswig-Holstein (Northern Germany) were collected in weekly intervals, using the bulk-sample method. The average element depositions in kg ha−1 a−1 were: 20 for S and 5.5 for N in List (North Sea Island Sylt) and Schleswig, 12 for S and 4.7 for N in Kiel, 16 for S and 4.3 for N in Luebeck and 18 for S and 4.2 for N in Quickborn near Hamburg.N and S concentrations showed a close relationship to the amount of precipitation and the following functions for the estimation of nitrate-N and sulfate-S deposition in Schleswig-Holstein could be derived: (x = precipitation in mm a−1, y = N or S deposition in kg ha−1 a−1) NO3-N: y = 0.003x + 2.29; SO4−S: y = 0.014x + 4.71. According to these relationships most of the element deposition occurred during atmospheric conditions of predominating winds from the west. Especially in the case of S, atmospheric deposition is the only external source of S supply for plants on many agricultural soils. Sometimes the low sulfur input is not sufficient to cover the requirements of agricultural crops in Schleswig-Holstein. Due to the negative S balance in many soils, future increase of S deficiency is expected.  相似文献   

11.
Finzgar N  Kos B  Lestan D 《Chemosphere》2004,57(7):655-661
The feasibility of in situ washing of soil contaminated with Pb (6.83 mmol kg(-1)) using biodegradable chelator, [S,S] stereoisomere of ethylenediamine disuccinate ([S,S]-EDDS) and horizontal permeable barriers was examined in soil columns. After 4-cycles of 10 mmol kg(-1) soil [S,S]-EDDS applications, followed by irrigation, 24.7% of total initial Pb was washed from the contaminated soil and accumulated into the barrier. Sequential extractions indicated that washing removed most of the Pb from the organic soil fraction. Barriers were positioned 20 cm deep in the soil and consisted of a 2 cm layer of nutrient enriched vermiculite. Barriers reduced leaching of Pb in the first cycle of [S,S]-EDDS addition by more than 500-times compared to columns with no barrier. After four cycles of chelator addition, a total of 0.24% of the initial Pb was leached from the columns with barriers. Four cycles of in situ soil washing in soil columns were less effective than simulated ex situ soil washing with 40 mmol kg(-1) [S,S]-EDDS, where 51.0% of the Pb was removed after 48-h extraction. Ex situ soil washing with 10 mmol kg(-1) [S,S]-EDDS was equally effective as the first cycle of in situ soil washing (15.5% and 14.5% of removed Pb, respectively).  相似文献   

12.
The relationships are considered between monthly and quarterly means of the fine particle sulfur (S) concentrations and wind flow direction, period of day and season of the year. The measurements used are those obtained at selected urban and at rural monitoring stations in the St Louis area during the Regional Air Pollution Study in 1975, 1976 and 1977. Higher mean fine particle S concentrations are observed with wind flows from the E compared to the W and from the NE and SE quadrants compared to the NW quadrant. Substantially higher fine particle S concentrations are obtained with wind flows from the E compared to the W even when conditions are selected so that the values of temperature, solar radiation intensity and wind speed are within the same restricted ranges. A consistent increase in the fine particle S concentrations occurs through the late morning and afternoon with decrease in the evening and especially in the early morning during spring and summer months with wind flows from the E.The contributions are estimated for local scale and regional scale processes to the observed fine particle S concentrations. Local scale processes include those involving atmospheric formation and primary emissions each contribute 0.6−1.0 and 0.6 μg m−3 of the fine particle S. Regional scale processes account for the greater part of the observed concentrations especially when the wind flows are from the SE or SW. Regional scale episodes involving passage of warm high pressure systems to the E of St Louis with accumulation of precursors made especially significant contributions to formation of fine particle S.The atmospheric gas phase and liquid phase chemical reactions contributing to the formation of fine particle S are discussed. Emphasis is placed on the effects of chemistry on the seasonal variations in concentrations of fine particle S.  相似文献   

13.
为综合利用黄磷尾气中的CO,通过计算平均活化能和测定XPS、TG/DTA和氮吸附特性的方法,研究了Cu2+和某金属离子M^n+改性碳脱除PH,和H2S的动力学和反应机理问题。结果表明:H2S在金属改性碳上反应时平均活化能为134.4J/mol为-0.76级反应,PH,在金属改性碳上反应时平均活化能为1247.6J/mol为-0.8级反应;减小改性碳粒径增加流量可以显著提高其脱除PH,和H。S的速率;XPS、TG/DTA和孔径分布分析证明,改性碳净化H2S和PH3是一个催化吸附过程,H2S和PH3首先与氧在改性碳表面进行催化氧化反应,然后生成S和P2O5沉积吸附在改性碳表面。  相似文献   

14.
The effectiveness of two amendments for the in situ remediation of a Cd- and Ni-contaminated soil in the Louis Fargue long-term field experiment was assessed. In April 1995, one replicate plot (S1) was amended with 5% w/w of beringite (B), a coal fly ash (treatment S1+B), and a second plot with 1% w/w zerovalent-Fe iron grit (SS) (treatment S1+SS), with the aim of increasing metal sorption and attenuating metal impacts. Long-term responses of daily respiration rates, microbial biomass, bacterial species richness and the activities of key soil enzymes (acid and alkaline phosphatase, arylsulfatase, beta-glucosidase, urease and protease activities) were studied in relation to soil metal extractability. Seven years after initial amendments, the labile fractions of Cd and Ni in both the S1+B and S1+SS soils were reduced to various extents depending on the metal and fractions considered. The soil microbial biomass and respiration rate were not affected by metal contamination and amendments in the S1+B and S1+SS soils, whereas the activity of different soil enzymes was restored. The SS treatment was more effective in reducing labile pools of Cd and Ni and led to a greater recovery of soil enzyme activities than the B treatment. Bacterial species richness in the S1 soil did not alter with either treatment. It was concluded that monitoring of the composition and activity of the soil microbial community is important in evaluating the effectiveness of soil remediation practices.  相似文献   

15.
Chung YC  Huang C  Tseng CP  Pan JR 《Chemosphere》2000,41(3):329-336
Gas mixture of H2S and NH3 in this study has been the focus in the research area concerning gases generated from the animal husbandry and the anaerobic wastewater lagoons used for their treatment. A specific microflora (mixture of Thiobacillus thioparus CH11 for H2S and Nitrosomonas europaea for NH3) was immobilized with Ca-alginate and packed inside a glass column to decompose H2S and NH3. The biofilter packed with co-immobilized cells was continuously supplied with H2S and NH3 gas mixtures of various ratios, and the removal efficiency, removal kinetics, and pressure drop in the biofilter was monitored. The results showed that the efficiency remained above 95% regardless of the ratios of H2S and NH3 used. The NH3 concentration has little effect on H2S removal efficiency, however, both high NH3 and H2S concentrations significantly suppress the NH3 removal. Through product analysis, we found that controlling the inlet ratio of the H2S/NH3 could prevent the biofilter from acidification, and, therefore, enhance the operational stability. Conclusions from bioaerosol analysis and pressure drop in the biofilter suggest that the immobilized cell technique creates less environmental impact and improves pure culture operational stability. The criteria for the biofilter operation to meet the current H2S and NH3 emission standards were also established. To reach Taiwan's current ambient air standards of H2S and NH3 (0.1 and 1 ppm, respectively), the maximum inlet concentrations should not exceed 58 ppm for H2S and 164 ppm for NH3, and the residence time be kept at 72 s.  相似文献   

16.
Chandra R  Raj A  Purohit HJ  Kapley A 《Chemosphere》2007,67(4):839-846
Eight aerobic bacterial strains were isolated from pulp paper mill effluent sludge. Out of eight through nutrient enrichment technique three potential aerobic bacterial strains ITRC S(6), ITRC S(7) and ITRC S(8) were found capable to effectively degrade the kraft lignin (KL), a major byproduct of the chemical pulping process and main contributor to the colour and toxicity of effluent. Further, these potential strains (ITRC S(6), ITRC S(7) and ITRC S(8)) were biochemically characterised as Gram variable small rod, Gram negative rod and Gram positive rod respectively. Subsequently, 16S rRNA sequencing showed 95% base sequence homology and it was identified as Paenibacillus sp. (AY952466), Aneurinibacillus aneurinilyticus (AY856831), Bacillus sp. (AY952465) for ITRC S(6), IITRC S(7) and ITRC S(8), respectively. In batch decolourization experiments Bacillus sp. ITRC S(8) reduced the colour of lignin amended mineral salt medium, pH 7.6 by 65% after 6th d, at 30 degrees C, A. aneurinilyticus ITRC S(7) by 56% and Paenibacillus ITRC S(6) 43%. Under these conditions the three strains degraded the KL by 37%, 33% and 30%, respectively while the mixed culture of these three bacteria reduced colour by 69%, lignin by 40% and total substrate by 50% under same conditions. Biodegradation of the KL was not affected by low (<0.2 mg l(-1)) dissolved oxygen content; thus oxygen inhibition is more likely to be a metabolism-dependent event. Initially with 48 h incubation the decolourization was slow with decreased pH. Further incubation there was rapid decolourization with slight increase in pH at 6d compared with initial pH by increasing culture optical density. The lignin analysis from medium with HPLC indicated complete degradation rather than biotransformation with complete loss of absorbance peak at 280 nm.  相似文献   

17.
A biofiltration technique was developed for removing a mixture of hydrogen sulfide (H2S), methanethiol (MeSH), and dimethyl sulfide (Me2S) from waste gases. Since H2S, especially at high concentrations, disturbs the removal of Me2S, two biotrickling filters with different microbes and operating pH levels were connected in series to create a two-stage system. Different loads of these gases were studied in order to determine their impact on the removal capacity of the system. The microbial consortia for these filters were enriched from the sludge of a Finnish refinery with bubbling H2S or Me2S. Acclimation for Me2S took 2 weeks, though no acclimation time was needed for the other gases. The first filter, at a pH of 2, removed most of the H2S and some of the MeSH and Me2S. The second filter, at a pH of approximately 6.5, removed the rest of the MeSH and most of the Me2S. The total maximum loads of the whole two-stage biotrickling filter were 1150 g/m3/day for H2S-S (suffix S indicates the results are counted as sulfur amounts), 879 g/m3/day for Me2S-S, and 66 g/m3/day for MeSH-S treated in a gas mixture. The average removal efficiencies for all gases tested were 99% or higher.  相似文献   

18.
Abstract

Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codis-posed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations >40,000 ppmv. Conversely, H2S concentrations were <1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

19.
造纸污泥硫化氢释放量及控制研究   总被引:1,自引:0,他引:1  
研究TCuSO_4、NaClO、KMnO_4、H_2O_2处理液及其浓度对造纸污泥硫化氢释放量的影响.结果表明.随各处理液浓度增大,硫化氢释放量有不同程度的减少;各种处理液均能明显降低造纸污泥硫化氢释放量,效果从好到差依次为CuSO_4、NaClO、KMnO_4、H_2O_2;CuSO_4的除臭机制是铜离子抑制细菌生长,同时与硫化氢反应生成不溶的CuS;而NaClO、KMnO_4、H_2O_2除臭机制是抑制细菌生长和氧化硫化氢产生单质硫;干污泥硫化氢释放量比湿污泥大.  相似文献   

20.
The effects of hydrogen sulfide (H2S) diffusion into activated sludge (AS) on odor and volatile organic compound (VOC) concentrations in offgas were studied over an 8-week period. Most VOCs detected in the offgas of both aeration tanks were aromatic hydrocarbons. The VOC concentrations generally decreased when H2S was introduced to the AS compared with the control, indicating a negative effect of H2S on VOC removal. Two volatile organic sulfur compounds present in the test AS offgas showed an increase followed by a decrease during H2S peak loads. Six VOCs and odor concentration increased during the introduction of an H2S peak; however no correlation was observed between H2S and odor concentration. The increase in odor concentration resulted from the increase in the concentration of six aromatic VOCs, which had their removal slowed down during a 100-ppmv H2S peak. Activated sludge diffusion provides effective H2S removal with minimal affect on odor emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号