首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of airborne particulate matter sampled by a conventional TEOM®, an experimental modified TEOM, operated at a lower temperature but fitted with a drier to remove moisture and a Partisol®, installed at a kerbside site in the North East of England, has been investigated. The results indicate that there is a seasonal variation in the composition of PM10 as sampled by the three monitors, with chloride concentration being significantly higher in the winter. The Partisol was found to sample a higher mass of chloride and nitrate, however the differences between the monitors was only significant for chloride. Both TEOM's were found to sample a greater mass of sulphate, although the variability in the data collected meant that significance of the results was not proven statistically. The range of artifacts associated with PM10 monitors is reviewed. Difficulties in the interpretation of results due to the variable nature of airborne particulate matter and the ability of filter based systems to accurately represent the composition of atmospheric particles are considered.  相似文献   

2.
Mass Concentration of ambient particulate matter with an aerodynamic diameter less than 10µm (PM10) are reported for the first time for a range of sites in Dublin City over a 6 month period from January 1st 1996 to June 30th 1996. PM10 gravimetric mass concentration measurements are made with low flow Partisol 2000 air samplers using an impaction type PM10 inlet and 47mm diameter glass fibre filters. In addition, much finer time resolution measurements (minimum sampling frequency of 30 minutes) are made using a tapered element oscillating microbalance (TEOM) PM10 mass monitor. These PM10 mass concentrations methods are also compared with mass concentration inferred using the standard black smoke method. Analysis of the ambient mass concentration data with reference to traffic density and meteorological influences are presented. Results for the first six months of 1996 show that the average PM10 values range from a high of 49 µg m-3 at the Dublin city centre site to 14 µg m-3 at one of the suburban sites. Intercomparison between PM10 and black smoke mass concentrations show that the relationship is site specific. Statistical analysis between PM10 levels and car traffic number show a positive correlation while a weak negative correlation is found between PM10 levels and rainfall amount, wind speed and air temperature.  相似文献   

3.
Airborne particulate matter (PM) has become one of the dominant pollutants with the increasing material and energy demand due to global economic growth. The main objective of this research is to provide a comprehensive receptor level characterisation of the particulate matter collected in a city environment. Particulate matter samples were collected on Tapered Element Oscillating Microbalance (TEOM) filters from five monitoring sites over a period of 1 year. An Andersen eight-stage cascade impactor was also used to collect airborne PM samples from three other locations to compare with the samples collected by TEOM. All the samples were then subjected to individual particle morphology and chemical composition analysis by SEM/EDS. Bulk chemical composition of the samples were also analysed through ICP–OES. Based on these analyses, possible sources of the PM samples were identified. The results showed that the monitoring sites in residential environments were dominated by transportation-derived particles and other migratory particulates. Monitoring sites near the city centre were dominant by particles from transportation, with biological particles abundant for the site closer to a river. The monitoring station located close to the industrial area, despite only 200 m away from a motorway, has low contribution of non-exhaust particulates from vehicles. Instead, the particulates collected from this site were dominated by industrial sources. An air dispersion modelling package was also used to model the particulate matter dispersion in the city area for the period of sampling. The results from the model showed that the points of high emissions were around industrial areas.  相似文献   

4.
提高TEOM数据准确性和有效率的方法   总被引:1,自引:1,他引:0  
基于振荡天平法颗粒物自动监测仪器在实际应用中存在的问题,在分析其工作原理的基础上,提出了增加光散射组件的辅助方案。实测结果表明:两者结合可以提高仪器检测数据的准确性和有效率,增强仪器的稳定性和可靠性,使仪器更加"皮实耐用"。  相似文献   

5.
The tapered element oscillating microbalance (TEOM) system is widely used to measure continuous particle mass concentrations in air quality networks. However, the semi-volatile aerosol material is lost under normal operation conditions (50 °C). This study has evaluated the error in the organic fraction of the TEOM-measured secondary organic aerosols formed from the degradation of biogenic pollutants. Experiments were carried out under controlled, water-free conditions in a fully equipped, high volume atmospheric simulator--the European PhotoReactor (EUPHORE). The ozonolysis of α-pinene, β-pinene and limonene provided a reproducible source of organic aerosol. Particulate matter concentration profiles were registered for different TEOM operating temperatures. When these values were compared with values from a filter-based gravimetric method and a scanning mobility particle sizer (SMPS), they showed that the differences between monitoring systems increased with increasing TEOM temperature. According to our results, when the TEOM is operated at 50 °C, it fails to measure 32-46% of the organic particulate material, depending on the aerosol precursor. This study has also identified and quantified the multi-oxygenated organic compounds lost in the TEOM monitoring by using a method based on the gas chromatography-mass spectrometry technique. Important losses have been calculated for relevant ambient aerosol compounds such as pinonic acid, pinonaldehyde, norpinone and limonalic acid. In conclusion, the present study has demonstrated that a high operating temperature of the TEOM monitor reduces the humidity interference but underestimates the semi-volatile organic fraction.  相似文献   

6.
Several samples of airborne particulate matter (PM), collected from 6th November to 6th December 2003 at a coastal site in the south-east of Italy, have been analyzed by different techniques to characterize elemental composition and morphological properties of the inorganic PM fraction and obtain preliminary results on anthropogenic contributions. Al, Cr, Cu, Fe, Mn, V, Pb, Ti, Ca and Zn mass concentrations, evaluated by an inductively coupled plasma atomic emission spectrometer, account for up to l% of the bulk PM mass in the investigated samples. According to geochemical calculations, Ca, Al, Fe and Mn are predominantly of crustal origin, while Cr, Cu, Pb, V, Ti and Zn heavy metals are of anthropogenic origin. Ion chromatography analyses have identified sulfate (SO(4)(2-)) nitrate (NO(3)(-)), sodium (Na(+)), and ammonium (NH(4)(+)) as the main ionic components accounting for up to 38% of the total PM mass and up to 90% of the total ionic mass. Besides ion chromatography, X-ray energy dispersive (EDX) microanalyses have revealed the high variability of Cl: its weight concentration varies from about 24% to below the detection limit (>or=0.5%) in the investigated samples. The marked anti-correlation between the excess of S and the Cl/Na ratio has allowed inferring that reactions between sea salt particles and acidic sulfates, which liberate HCl gas to the atmosphere leaving particles enriched in non-sea-salt sulfates, have significantly contributed to chloride depletion. Morphological analyses by scanning electron microscopy have shown that about 90% of the total sampled particles have a diameter 相似文献   

7.
Looking for robust indicators of motor vehicle emissions it has been found that brake wear and linings are significant contributors of Cu, Mo and Sb to air particulate matter. These trace elements, whose mutual ratios in airborne particulate matter resulted quite different from those in crustal material, appear to be available fingerprinting tools to identify the contribution of on-road vehicles to traffic-derived particulate matter. In this study, the results of analytical determinations of Cu, Mo and Sb on PM(10), PM(2.5), vegetation and brake dust samples, together with gas (CO, NOx) concentrations, are discussed. Highly significant correlations among Cu, Sb and Mo were observed in particulate matter from Palermo and between Cu-Sb and Cu-Mo at Catania. Further significant positive correlations have been found in pine needles from Palermo, Gela and in platanus leaves from Catania.  相似文献   

8.
Monitoring personal exposure to particle matter (PM(2.5)) in ambient air requires performing measurements using portable monitors. In this work, the portable nephelometer SidePak? AM510 Personal Aerosol Monitor manufactured by TSI Inc. was evaluated against a Tapered Element Oscillating Microbalance (TEOM) equipped with a Filter Dynamics Measurements System (FDMS). Conventionally, the SidePak is calibrated with respect to the Arizona Road Test Dust and then multiplied by an environmental calibration factor to yield mass concentration. To adapt this calibration to specific field conditions, we present an implementation of this calibration by introducing a growing factor correction which takes into account relative humidity and the dry and wet portions of the refractive index estimated from TEOM-FDMS measurements. PM(2.5) sampling with several SidePaks AM510 was carried out in background and rural sites in the Po Valley (Italy). Modeled SidePak data were plotted vs. reference TEOM-FDMS data which show a good agreement.  相似文献   

9.
A positive correlation has been established between increased levels of airborne particulate pollution and adverse health effects, the toxicological mechanisms of which are poorly understood. For toxicologists to unambiguously determine thesemechanisms, truly representative samples of ambient PM10 are required. This presents problems, as PM10 collecting equipment commonly employed, such as the Tapered Element Oscillating Microbalance (TEOM®), heat the inflow toexclude moisture or use fibrous filters, resulting in a PM10sample that may have undergone significant chemical change on thefilter surface or is contaminated by filter fibres. Other systems(i.e. Negretti and Partisol) can successfully collect PM10 without chemical alteration or filter contamination. Comparativecollections from Port Talbot, S. Wales suggest that TEOMs and Negretti/Partisol systems collect different PM10's; the principle difference arising from the TEOM's heating chamber, which precipitates water-soluble ions and volatilises some organic components. This results in both the mass and compositionof the PM10's being altered. Particle size distributionsfor Negretti and Partisol collections highlighted differences mainly attributed to different flow rates. The results of thiswork demonstrate that simple correlations between PM10 massand adverse health effects are problematic. Furthermore, elucidation of the complex fractionation and chemical changes indifferent collectors is necessary.  相似文献   

10.
Emission from field burning of agricultural crop residue is a common environmental hazard observed in northern India. It has a significant potential health risk for the rural population due to respirable suspended particulate matter (RSPM). A study on eight stage size segregated mass distribution of RSPM was done for 2 wheat and 3 rice crop seasons. The study was undertaken at rural and agricultural sites of Patiala (India) where the RSPM levels remained close to the National Ambient Air quality standards (NAAQS). Fine particulate matter (PM(2.5)) contributed almost 55% to 64% of the RSPM, showing that, in general, the smaller particles dominated during the whole study period with more contribution during the rice crop as compared to that of wheat crop residue burning. Fine particulate matter content in the total RSPM increased with decrease in temperature. Concentration levels of PM(10) and PM(2.5) were higher during the winter months as compared to that in the summer months. Background concentration levels of PM(10), PM(2.5) and PM(10-2.5) were found to be around 97 ± 21, 57 ± 15 and 40 ± 6 μg m(-3), respectively. The levels increased up to 66, 78 and 71% during rice season and 51, 43 and 61% during wheat crop residue burning, respectively. Extensive statistical analysis of the data was done by using pair t-test. Overall results show that the concentration levels of different size particulate matter are greatly affected by agricultural crop residue burning but the total distribution of the particulate matter remains almost constant.  相似文献   

11.
为研究乌鲁木齐市冬季采暖期间大气颗粒物污染特征,通过采样和在线监测二种手段分析了2015年1~2月大气颗粒物样品,采用重量法分析颗粒物质量浓度,并对其相关性进行分析。结果表明:依据《环境空气质量标准》(GB 3095-2012),采样期间乌鲁木齐市大气PM_(10) 和PM_(2.5)的日均质量浓度均超过了国家二级标准,颗粒物污染严重;PM_(10) 和PM_(2.5)存在显著相关性,PM_(2.5)和PM_(10) 浓度的比值均大于0.5,采暖期PM2.5对乌鲁木齐市大气颗粒物贡献显著。  相似文献   

12.
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.  相似文献   

13.
Airborne particulate matter has been collected from within,and proximal to, an opencast coal mine in south Wales. Thiswork forms the first part of a three year project to collectand characterise, then determine the possible toxicology ofairborne particles in the south Wales region. High-resolutionField Emission SEM has shown that the coal mine dusts consistlargely of an assemblage of mineral grains and vehicle exhaustparticles. SEM-EDX has shown that the mineralogical make-up ofthe PM10 is complex, heterogeneous, and constantly changing.These findings are supported by analytical TEM-EPXMA.However, patterns can be determined relating the mineralogicalcomposition of the airborne particles to collection locationsand mining activities within the opencast. At our studyopencast, Park Slip West, quartz, which has known healtheffects, never exceeded 30% of the total collection mass, andaverage levels were much less. Vehicle exhaust emissions wasthe largest source in terms of particle numbers. The mass ofairborne particulate matter within the pit averagedapproximately twice that of outside the pit: importantlyhowever, this higher mass was due to relatively large, andnon-respirable, mineral grains. This study demonstrates that the physicochemical andmineralogical characterisation of airborne particles frommining and quarrying is essential to quantify the respirablefraction, and to identify potentially hazardous componentswithin the PM10.  相似文献   

14.
Total suspended particles mass concentrations (TSP) and bulk depositions of particulate matter (PM depositions) were measured around a cement plant located in the multi-impacted area to assess the affect of the plant on the ambient air in the vicinity in Izmir, Turkey. TSP samples were collected five times a month whereas PM depositions were sampled monthly at four sites between August 2003 and January 2004. The concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn in TSP and PM depositions (except Cu) were reported. Chemical mass balance (CMB) receptor model with local source profiles was run in order to calculate the source contributions of the PM sources to the concentrations of TSP, PM depositions, and trace elements. Traffic was found to be the major contributor to TSP whereas PM depositions dominantly result from area sources including several stone quarries, concrete plants, lime kilns, and asphalt plants in the region. CMB model results indicate that the cement plant is a significant contributor to TSP, PM depositions, and trace elements, particularly Cd.  相似文献   

15.
质谱直接测量法解析盐城市大气细颗粒物来源   总被引:3,自引:0,他引:3  
为全面了解盐城市大气颗粒物的组成,摸清以PM2.5为首要污染物的来源,说清其化学组分和源贡献率,于2014年12月16日00:00—2014年12月21日09:00,利用在线单颗粒气溶胶质谱仪,对盐城市细颗粒物进行实时在线源解析。结果表明,盐城首要污染物为燃煤,占比为23.7%,其次是机动车尾气,占比为18.3%,第三位是扬尘,占总颗粒数的15.7%,生物质燃烧占比为14.8%位列第四,工业工艺源、二次无机源和其他源贡献率相对较小。  相似文献   

16.
An investigation to find out presence of particulate matter in Marikana, a mining area in Rustenburg town, South Africa, was carried out in the months of August and November of 2008. Samples were collected for measurements of particulate matter (PM) of particle diameters of PM10, PM2.5, and PM1. After gravimetric analysis of daily measurements, it was found that PM10 concentration values ranged between 3 and 9 ??g/m3, PM2.5 concentration values ranged between 16 and 26 ??g/m3, and PM1 concentration values ranged between 14 and 18 ??g/m3 for the month of August 2008. For the month of November, it was found that PM10 concentration values ranged between 2 and 8 ??g/m3, PM2.5 concentration values ranged between 0 and 5 ??g/m3, and PM1 concentration values ranged between 4 and 15 ??g/m3. This study was undertaken as preliminary work having in mind that mining activities could be emitting high levels of particulate matter in the atmosphere which might be degrading the quality of the air. It was observed, however, that the daily particulate matter especially of PM10 emitted were quite low when compared to laid down International Air Quality Standards. The standards did not give guidelines for particulate matter of diameter 2.5 ??m. It was concluded that particulate matter came from three major sources: platinum mining, domestic biomass burning, and traffic emissions due to fuel burning.  相似文献   

17.
Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 μm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 – TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.  相似文献   

18.
Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern China, the Yellow Sea, and the Korean Peninsula to the Korea East Sea was characterized by high AOD distributions. In the episode of anthropogenic polluted aerosols, FW averaged 0.63 ± 0.16, a value higher than that in the episode of airborne dust particles (0.52 ± 0.13) with sandstorms, showing that fine anthropogenic pollutant particles contribute greatly to atmospheric aerosols in East Asia.  相似文献   

19.
Surface coal mining creates more air pollution problems with respect to dust than underground mining . An investigation was conducted to evaluate the characteristics of the airborne dust created by surface coal mining in the Jharia Coalfield. Work zone air quality monitoring was conducted at six locations, and ambient air quality monitoring was conducted at five locations, for a period of 1 year. Total suspended particulate matter (TSP) concentration was found to be as high as 3,723 μg/m3, respirable particulate matter (PM10) 780 μg/m3, and benzene soluble matter was up to 32% in TSP in work zone air. In ambient air, the average maximum level of TSP was 837 μg/m3, PM10 170 μg/m3 and benzene soluble matter was up to 30%. Particle size analysis of TSP revealed that they were more respirable in nature and the median diameter was around 20 μm. Work zone air was found to have higher levels of TSP, PM10 and benzene soluble materials than ambient air. Variations in weight percentages for different size particles are discussed on the basis of mining activities. Anionic concentration in TSP was also determined. This paper concludes that more stringent air quality standards should be adopted for coal mining areas and due consideration should be given on particle size distribution of the air-borne dust while designing control equipment.  相似文献   

20.
Epidemiological studies have demonstrated the relationship between exposure to ambient particulate matter (PM) and health effects in those with cardiopulmonary diseases. The free radical generating activity of particles has been suggested as a unifying factor in the biological activity of PM in toxicological studies but so far has not been applied as a method for environmental monitoring of PM. The purpose of this study was to characterize hydroxyl radical (OH*) production by different size fractions of PM, to use as an alternative method for monitoring of PM composition and activity. We have developed a method, using electron paramagnetic resonance (EPR), to measure OH* radical formation in suspensions of particles in the presence of hydrogen peroxide and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a specific spin-trap. Samples of ambient particulate matter (PM) of different size fractions were collected from various sites on various filters. PM deposited on filters as well as suspensions in water retain its ability to generate OH* and this generation is determined by concentration of hydrogen peroxide and soluble metals. However, large variations in OH* radical formation and kinetics were found with different soluble metals and within metals (Fe, V) with different valencies. The method was applied to environmental monitoring in Hettstedt-Zerbst, situated in South-Eastern Germany, where it showed a relation to Cu-content of PM. The method was also applied in Duisburg, where the PMI fraction showed the highest DMPO-OH* generation but was not linked to particle counts. The method integrates metal bioavailability and reactivity and can provide a better understanding of the effect of small variations in mass concentrations on health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号