首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.

Purpose

In order to better understand if the metabolic responses of echinoids could be related to their acid?Cbase status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures.

Methods

Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19?days). The relation between the coelomic fluid acid?Cbase status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied.

Results

The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg2+] and [Ca2+] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V O2) which was increased at pH?7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.  相似文献   

2.
Abstract

A fluorometric method was developed to quantify glyphosate loss from glass surfaces after exposure to the natural forest environment. The method was based on the principle of converting glyphosate into glycine, followed by the fluorogenic labeling with o‐phthalaldehyde. A fluorometer (with λ Ex = 360 nm / λEm =430 nm) was used to quantify the derivatized fluorogenic compound. Response was linear over the concentration range of 143, 286, 572, 858 and 1144 μg of glyphosate (acid equivalent, AE) per mL of the diluted Vision® formulation. Three end‐use mixtures of Vision® were prepared, each at a concentration of 28.6 g AE/L, without and with two adjuvants, Ethomeen® T/25 at 4.5 mL/L and Silwet® L‐77 at 1.5 mL/L. Several dilutions of the end‐use mixtures were applied on glass slides without and with the coating of cuticular wax extracted from trembling aspen foliage. The slides were left for 5 days in a forest opening to determine rainfastness, volatilization and photostability of glyphosate. The residues were quantified using the method developed. Three calibration curves were required because Silwet decreased the fluorometric response of glyphosate, whereas Ethomeen increased it. The minimum detection limit was 143 μg of glyphosate/mL. Glyphosate was resistant to volatilization and sunlight‐mediated degradation, regardless of the presence of wax coating or the adjuvants. About 64% of the applied glyphosate was washed off after a 9.6 mm rainfall when no adjuvant was present. Both adjuvants provided some amount of rain‐protection to glyphosate, but Silwet reduced the washoff to a greater extent (46%) than Ethomeen (55%).  相似文献   

3.

Purpose

The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity.

Methods

Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile?Cbutadiene?Cstyrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3?days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates.

Results

For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235?g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17?C24?g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis).

Conclusions

Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.  相似文献   

4.
5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号